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ABSTrACT

An index sensitive to global warming, the standardized precipitation evapotranspiration index (SPEI), is employed in 
this study to construct a 1-km gridded multi-scalar drought index data bank in Taiwan. A site- and scale-dependent posterior 
fitness assessment procedure regarding determination of the most appropriate statistical distribution is used to standardize 
the station’s water deficit/surplus series, thereby SPEI at various time scales. Model uncertainty at different scales is evalu-
ated and the results show that the uncertainty is higher for the shorter 10-day scale. Contrasts in the climatic means between 
SPEI and popular standardized precipitation index (SPI) are compared. The climatic pre-summer monsoon heating and mid-
summer drought phenomena are better captured by the SPEI. The established data bank, one of the data integration tasks in 
the Taiwan Climate Change Projection and Information Platform (TCCIP) project, is helpful in historical drought diagnostics. 
It also serves as the ground truth to correct model biases while using the regional model to project hydro-climate change and 
impact assessment, and historical baseline in the statistical downscaling while developing the statistical relationship between 
the general circulation model outputs and fine-scale observations. As an example of applications, the gridded SPEI at 3-month 
time scale is used to study the interannual variability in springtime drought. The results show that Taiwan’s southwestern 
plains region is most vulnerable to the risk of droughts. Composite analysis reveals that possible causes of island-wide drought 
link to the turnabout of cold El Niño-Southern Oscillation (ENSO) phase but also to the interannual variability in Pacific Dec-
adal Oscillation when the analysis is initiated from the regional perspective.
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1. InTroDuCTIon

One of the central missions for the Taiwan Climate 
Change Projection and Information Platform (TCCIP, here-
inafter) project is to integrate raw station data distributed 
from various sources (see section 2) by which complete and 
high resolution gridded data can be produced via imputation 
and interpolation methods. Within the context of exploring 
regional climate change under global warming, the primary 
motivation for initiating the TCCIP project in 2009 involves 
three reasons for this request. Firstly, the importance of 
validating the regional climate model (RCM) output is in-
creasing (Déqué et al. 2007; Fowler et al. 2007; Giorgi et al. 

2009) due to the needs for impact assessments (IPCC 2014). 
The gridded data generated by the RCM represents the area 
averaged state rather than the point process. Constructing a 
mesh with each gridded value representing the best estimate 
average of the observations inside the grid is the most ap-
propriate way for validating the model output rather than 
directly comparing it with the point observations (Osborn 
and Hulme 1998). Secondly, the downstream impact mod-
els often require complete gridded data to facilitate imple-
mentation with no further need to consider how to handle 
missing values (Haylock et al. 2008). Finally, the gridded 
data fill estimates at locations away from the point observa-
tions, thereby allowing local climate in data-sparse areas to 
be studied to some extent.
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Amongst others, precipitation and surface air tempera-
ture data are the foci of data collection due to their pivotal 
roles in determining the surface hydro climate, and thereby 
human activities. In this regard, drought due to precipitation 
deficit has been one of the major concerns for the TCCIP 
working group, especially when our world is warming (Dai 
2011, 2013). Drought affects more people than any other 
natural hazard (Obasi 1994) and is of great importance in 
the planning and management of water resources (Wilhite 
2005). A long-lasting drought has dire socio-economic con-
sequences. Different from the permanent aridity in arid re-
gions, drought is a temporarily recurring extreme climate 
event (Dai 2011) and can occur in virtually all climatic 
zones, including monsoonal Asia. Since the mid-1990s, 
prolonged and widespread droughts have occurred in India 
and the occurrence frequency of droughts also increases as 
global warming progresses (World Bank 2003). Vulnerable 
drought-prone countries also include China. Severe droughts 
occurred in 1997 and 1999 to 2002 over northern China 
and resulted in large economic and societal losses (Zhang 
2003). As in India, China has suffered an increased risk for 
droughts after 1980s as a warming world generates higher 
surface temperatures thereby increasing drying (Dai et al. 
2004; Zou et al. 2005). Although the annual precipitation 
amount is high, Taiwan is also prone to droughts due to its 
uneven temporal precipitation distribution. Severe droughts 
occurred in 1963 to 1964, 1991, 2002 to 2003, and the first 
half of 2015. Based on the secular-long station records, it 
has also been detected that the long-term drought occur-
rence trend has increased in central and southern Taiwan 
since the 1960s (Chen et al. 2009).

Indexing is one among many ways for describing 
drought severity. The first comprehensive effort to evaluate 
the drought severity is the Palmer drought severity index 
(PDSI; Palmer 1965), based on a soil water balance equa-
tion. Utilizing precipitation and temperature records to cal-
culate moisture supply and demand, PDSI and its ensuing 
variants have been widely used for monitoring (e.g., Karl 
and Quayle 1981; Jones et al. 1996) and forecasting (e.g., 
Kim and Valdés 2003; Özger et al. 2009) regional droughts, 
and assessing the global warming effect on the areal extent 
and severity of global droughts (Dai 2011). The primary 
limitation of PDSI is its inherent time scale making it more 
suitable for monitoring agricultural droughts rather than hy-
drological droughts (Guttman 1998). To mediate this draw-
back, McKee et al. (1993) suggested using the standardized 
precipitation index (SPI hereinafter) based on an appropri-
ate probability distribution to monitor meteorological and 
hydrological droughts. Since then SPI has been popular 
worldwide (e.g., Edwards and McKee 1997 in USA; Lana 
et al. 2001 in Spain; Wu et al. 2001 in China; Mishra and 
Desai 2005 in India) and in local hydrological and meteoro-
logical societies (Shiau 2006; Chen et al. 2009, 2013).

Based on the precipitation record length, SPI can be 

calculated for a desired period. Such versatility allows 
SPI to monitor changes in both short-term water supplies 
such as soil moisture and long-term water resources such 
as groundwater and reservoir levels. The major concern of 
SPI is that it relies on precipitation alone. Lots of zero pre-
cipitation values in a particular season are common for dry 
climatic regimes such as southern Taiwan during the north-
easterly monsoon season. For shorter time scales, the cal-
culated SPI series may not be normally distributed because 
of the highly-skewed underlying precipitation distribution. 
This may cause large biases while modeling precipitation 
distributions from limited data samples. With regard to the 
climate change issues, another major concern of using SPI 
is that it does not explicitly take the rising temperature fac-
tor into account. The local water demand, especially during 
the hot season, is critically dependent on the temperature via 
evapotranspiration.

Recently, Vicente-Serrano et al. (2010) proposed a new 
drought index, the standardized precipitation evapotranspi-
ration index (SPEI hereinafter), to combine the multi-scalar 
character advantages of SPI with the PDSI capacity for com-
prising the temperature factor in the drought assessment. 
Because the generally rising temperature factor is explicitly 
included in its calculation (detailed in section 3), SPEI is 
sensitive to the possible effects of global warming on region-
al droughts at various time scales. Furthermore, it can also be 
used for detecting and attributing drought severity while pro-
jecting the future climate change scenarios. Although only 
recently developed, SPEI has been used to study droughts 
worldwide, for example: Australia (Allen et al. 2011); Eu-
rope (Potop et al. 2012); Africa (Harari and Ferrara 2013); 
and China (Yu et al. 2014). However, its use has not been 
propagated into the local meteorological as well as hydro-
logical society yet, to the best of the author’s knowledge.

To fulfill the aforementioned scientific missions as-
signed to the TCCIP project, the goal of this study is to 
construct a high-resolution gridded SPEI data bank at multi 
time scales over Taiwan and adjacent islands to facilitate the 
downstream drought related studies. After illustrating the 
sources of acquired precipitation and temperature data and 
data preprocessing in section 2, section 3 discusses the meth-
odology of how to attain the goal. Specifically, a three-step 
procedure called posterior fitness assessment is proposed in 
this study to select the most appropriate statistical distribu-
tion for standardizing the water deficit/surplus series. Model 
uncertainty due to the chosen statistical models while con-
structing the station SPEI (and SPI) and the estimates of 
climates at different time scales are discussed in section 4. 
There, the contrasts in the climatic features between SPEI 
and SPI maps are highlighted. As an example of applying 
the established SPEI gridded data to the downstream appli-
cations, the interannual variability in springtime droughts in 
Taiwan is investigated and preliminary results are reported 
in section 5. Section 6 summarizes this study.
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2. DATA SourCES AnD PrEProCESSInG

Through the data exchange platform of TCCIP at Na-
tional Science and Technology Center for Disaster Reduction 
(NCDR), large efforts have been made to collect the rain-
fall and temperature data archived at various governmental 
agencies. These include the Central Weather Bureau (CWB) 
of Ministry of Transportation and Communications (MOTC) 
providing the rainfall and temperature data from synop-
tic stations (SYNOP) and auto rainfall observing network 
(ARON); the Water Resources Agency (WRA) of Ministry 
of Economic Affairs (MEA) providing rainfall observations 
from the hydro stations, rainfall and temperature data from 
the agronomy stations of Irrigation Association of Taiwan 
Province before 1998 (agronomy station data became void 
after 1999 due to the virtualization of Taiwan Province); the 
Civil Aeronautics Administration (CAA) of MOTC provid-
ing rainfall and temperature observations from civil airports, 
and the Air Force providing rainfall data at military airports. 
Few rainfall and temperature records in the mountainous ar-
eas are also obtained from the state-owned Taiwan Power 
Company when the company explored routes to construct 
the island-wide electric transportation network in the 1960s 
and 1970s. We discarded a few stations having record length 
less than two years. Using the 2-yr criterion does not seem to 
be rigid statistically. However, such loose criterion is based 
on the consideration that early data in mountainous areas are 
invaluable and worth being kept to facilitate the subsequent 
missing data imputation.

A serial sifting process such as deleting/combining 
repetition data, handling the inconsistent station coding of 
some agronomy stations, and manually correcting the obvi-
ous errors in the original handwritten records has been labo-
riously taken to assure data quality. Interested readers in the 
quality assurance and control of station raw data can refer to 
Hung (2012) for details. One thousand seven hundred and 
fifteen rainfall and 559 temperature stations were used in 
gridded SPEI/SPI dataset construction. See Fig. 1a for the 
rainfall station distributions and their geographical locations 
in Taiwan. As shown, although the density in the western 
plains of Taiwan is relatively high, stations are still scarce 
in the remote mountainous areas of the Central Mountain 
Range (CMR) when the elevation is higher than 2000 m. A 
similar data richness problem is fairly true for the tempera-
ture stations (not shown).

Missing data is unavoidable. The incomplete time 
series in both rainfall and temperature data found in both 
daily and monthly-mean records need to be imputed. The 
technique described in Simolo et al. (2010) (and earlier 
works: Shepard 1968, 1984; Willmott et al. 1985) is simple 
but has been proved to be efficient in high-resolution data 
analysis (e.g., Brugnara et al. 2012). This method is em-
ployed to perform the imputation of missing data in station 
time series. Briefly, the missing records at the target sta-

tion are filled using the weighted averages of the products 
of three weights calculated at n neighboring reference sta-
tions having the concurrent records. Number n is set to 20 
in the current study. The product of weights multiplies the 
relative radial, elevation, and angular weights of reference 
stations together. The introduction of angular weight, the 
angular separation of any two reference stations i and j with 
the vertex of the angle defined at target station, avoids the 
undesired over-weighting of areas with high station density 
(Willmott et al. 1985; Efthymiadis et al. 2006). We chose 
the top 10 reference stations with the highest products of 
three weights to calculate their weighted average. Interested 
readers in the data imputation technique can refer to Simolo 
et al. (2010; also see Weng and Yang 2012 for its recent ap-
plication in Taiwan) for details.

As mentioned, number of the temperature stations is 
far less than the number of rainfall stations. However, we 
need temperature data to coexist with the rainfall data at the 
same station to calculate the SPEI value. Spatiotemporal-
ly, temperature is in general a more homogeneous climate 
variable than rainfall. The error caused by the interpolation 
scheme is presumably smaller. Therefore, for those rain-
fall stations lacking temperature records, we first apply the 
aforementioned missing data imputation technique to fill 
the temperature gaps before calculating the station SPEI. 
Complete rainfall and temperature series (from 1 January 
1960 to 31 December 2012) were therefore imputated for 
1715 stations.

3. METhoDoloGy
3.1 SPEI/SPI Calculations

The first step in calculating the SPEI is to evaluate 
the potential evapotranspiration (PET hereinafter). This is 
difficult because PET is in fact determined using many pa-
rameters such as humidity, soil wetness, insolation, vapor 
pressure, surface-atmosphere latent heating, and sensible 
heating, in addition to the ground temperature (Shuttle-
worth 1993; Allen et al. 1998). The popular Penman-Mon-
teith method, recommended by the Food and Agriculture 
Organization (FAO) of the United Nations as the standard 
method for computing PET, cannot be used in the cur-
rent study because the required solar radiation data is not 
available at most stations. Instead, we followed the simple 
method described in Thornthwaite (1948) to calculate PET. 
This method, which only needs the surface temperature and 
station’s latitude as input, has been shown able to provide 
similar results as more complex methods when a drought 
index is calculated (Maurer 2007). Although Hobbins et al. 
(2008) found that the PET estimated using the Thornthwaite 
method could lead to errors in energy-limited regions; this 
should not be a critical problem in subtropical Taiwan. Since 
rainfall and surface air temperature are the only two climate 
variables with long historical records and the latter is the 
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main theme in a warming world, the SPEI can make full use 
of these data to test drought sensitivity to global warming. 
Vicente-Serrano et al. (2010) provided the step-by-step pro-
cedure using Thornthwaite method to calculate PET.

With the monthly (and daily) PET data available, the 
monthly (or daily) series Di

k  consisting of the aggregation 
of differences di between the precipitation Pi and PETi,  
di = Pi - PETi, can be formulated as

D di
k

mm i k
i

1= = - +/  (1)

where i is the monthly (or daily) index, k is the chosen time 

scale, i ≥ k, and D di
k

i=  when k = 1. The calculated Di
k  

series provides a simple measure of the accumulated water 
surplus or deficit and emphasizes the role of temperature 
in possible droughts at different time scales. Similarly, the 
monthly (or daily) series D*i k  consisting of the accumulated 
precipitation alone can be formulated as

D P*
i

k
mm i k

i
1= = - +/  (2)

while constructing the SPI on the chosen time scale k. To 
fulfill the needs in various applications, SPEI/SPI datasets 
with different time scales (from 10-day up to 2-yr) were  

(a) (b)

(c)

Fig. 1. (a) The topography of Taiwan and the geographic locations of rainfall stations operated by various governmental agencies: the automatic 
rainfall observing network (ARON; red dots) by the Central Weather Bureau (CWB), the hydro stations (blue dots) by the Water Resources Agency 
(WRA), Ministry of Economic Affairs (MEA), and synoptic stations (SYNOP) by the CWB plus airport observations by the Civil Aeronautics Ad-
ministration (CAA), Ministry of Transportation and Communications (yellow dots); (b) the topography of Taiwan and specific statistical distribu-
tions: Pearson type III (PE3; orchid dots), log-normal (LN3; aqua dots), generalized logistic (GLO; silver dots), generalized extreme-value (GEV; 
green dots), generalized Pareto (GPA; yellow dots), Gamma (GAM; dark orange dots), Gumbel (GUM; dark orange dots), four-parameter Kappa 
(KAP; red dots), and five-parameter Wakeby (WAK; blue dots) distributions, employed at individual stations while calculating the SPEI on the 
1-month time scale; (c) the administrative districts of Taiwan.
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generated by the TCCIP working group. In this report, 
we will mainly discuss the datasets with 10-day, 1-, and 
3-month time scales.

The standardization for the Di
k  (or D*i k ) series is com-

prised of a transformation of a statistical distribution appro-
priately describing the long-term series of observations to 
standard Gaussian distribution. McKee et al. (1993) used the 
two-parameter Gamma distribution to develop SPI. Recently, 
the two-parameter Gamma distribution was also adopted by 
Chen et al. (2013) to construct SPI and develop probabilistic 
drought forecasting in southern Taiwan. Guttman (1999) rec-
ommended the three-parameter Pearson type III distribution 
(sometimes referred to as the 3-parameter Gamma distribu-
tion) while calculating SPI. Since negative values (i.e., wa-
ter deficit) exist in the Di

k  series during the dry seasons, the 
two-parameter Gamma and three-parameter Pearson type III 
distributions commonly used in standardizing the D*i k  series 
(having zero lower bound) may not be adequate to standard-
ize the Di

k  series to obtain the SPEI. Vicente-Serrano et al. 
(2010) suggested the three-parameter log-logistic distribu-
tion for standardizing the Di

k  series worldwide. However, 
the log-logistic distribution drawback is the existence of 
statistical moments for a very limited range of distribution 
parameters (Rowiński et al. 2002). Therefore, it seems that 
the universally “best” distribution does not exist.

This study proposes a posterior fitness assessment 
procedure to select the most appropriate statistical distribu-
tion for standardizing Di

k  and D*i k  series. Nine theoretical 
distributions including the 2-parameter Gamma (GAM), 
2-parameter Gumbel (GUM), 3-parameter Pearson type III 
(PE3), 3-parameter log-normal (LN3), 3-parameter general-
ized logistic (GLO), 3-parameter generalized extreme-value 
(GEV), 3-parameter generalized Pareto (GPA), four-pa-
rameter Kappa (KAP), and five-parameter Wakeby (WAK) 
distributions, are tested first to model the Di

k  values on the 
chosen time scale and at the specific station. We use the L-
moment method (Hosking 1990; Fortran routines are avail-
able at the Internet location http://lib.stat.cmu.edu/general/
lmoments) to estimate the parameters for the above distribu-
tions. The L-moments, though analogous to the convention-
al central moments, are able to characterize a wider range 
of distributions and are more robust to the outliers (Hosking 
1992; Ulrych et al. 2000).

After the parameters are estimated the corresponding 
and determined cumulative distribution function F(x) of a 
specific distribution, where random variable x represents the 
observed Di

k  (D*i k ) series, is inversely mapped to the quan-
tile function (i.e., the probit function called by statisticians) 
of standard Gaussian distribution zp, ( )z erf p2 2 1p

1= -- , 
p = 1 - F(x) to get the SPEI (SPI). The erf -1 is the inverse 
function of error function. The zp, namely the desired SPEI 
(SPI) series, has no analytical expression. We use the popu-
lar formula of Abramowitz and Stegun [1965, Eq. (26.2.23)] 
to numerically approximate the zp as follows:

z t
d t d t d t

c c t c t
1p

1 2
2

3
3

0 1 2
2

= -
+ + +

+ +  (3a)

where lnt p1 2= ^ h , when 0 < p ≤ 0.5. When p > 0.5, the 
zp becomes

z t
d t d t d t

c c t c t
1p

1 2
2

3
3

0 1 2
2

= - +
+ + +

+ +  (3b)

where lnt p1 1 2= -^ h6 @ . The coefficients c0 = 2.515517, 
c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, 
d3 = 0.001308.

Finally, two L-moment ratios: L skewness 3x  and L 
kurtosis 4x , of the estimated SPEI/SPI (i.e., the transformed 
zp series) can be calculated as 3 3 2x m m= , and 4 24x m m= ,  
where 2m , 3m , and 4m  are the L-moments obtained from the 
probability-weighted moments (PWMs; cf. Greenwood et 
al. 1979; Wallis 1982; Haktanir 1991). The relationships be-
tween the L-moments and PWMs are as follows:

w1 0m =  (4a)

w w22 0 1m = -  (4b)

w w w6 63 0 1 2m = - +  (4c)

w w w w12 30 204 0 1 2 3m = - + -  (4d)

The PWMs of order s, ws, s = 0, 1, 2, 3, are calculated as

(1 ) ( )w N f1 SPEIs i ii
N 2
1= -=/  (5)

where i is the range of observations arranged in ascending 
order, N is the sample size, SPEIi (or SPIi) is the transformed 
zp series, and fi is the distribution-independent plotting-posi-
tion estimator (cf. Hosking and Wallis 1995). Hosking and 
Wallis (1997) suggested the Landwehr formula (Landwehr 
et al. 1979) for calculating fi, .f i N0 35i = - , to get the rea-
sonable results.

If the observed Di
k  series is well described by the 

selected statistical distribution, the transformed zp se-
ries should then approximate the standard Gaussian dis-
tribution which has L skewness 03x = , and L kurtosis 

.tan30 2 9 0 12264
1 .x

r
= --  (Hosking and Wallis 1997). 

The most appropriate distribution is thus the one with the 
smallest Euclidean distance d, ( ) ( . )d 0 0 12263

2
4

2x x= - + -Y Y ,  
where ( , )3 4x xY Y  are the estimated ( , )3 4x x  by the specific dis-
tributions. As an example, Fig. 1b shows the selected statis-
tical distributions at individual stations for the SPEI on the 
1-month time scale. Clearly, a unified distribution does not 

http://lib.stat.cmu.edu/general/lmoments
http://lib.stat.cmu.edu/general/lmoments
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exist. Instead, stations at high mountainous regions prefer 
PE3 (orchid dots) and KAP (red dots) distributions, whereas 
many stations in the western plains choose GLO (silver dots) 
and WAK (blue dots) distributions. The LN3 (aqua dots) and 
GEV (green dots) distributions are mainly found at stations in 
the foothills of CMR.

Choosing a distribution with many parameters seems 
to be odd as the basic precept in statistical modeling is to 
keep the number of parameters as low as possible. Never-
theless, since the aim of the current study is to provide a 
high quality SPEI databank facilitating the use of well-es-
tablished Gaussian process methods, and the estimated Di

k  
( )D*i k  series, if necessary, can be easily obtained through the 
analytic quantile functions of these theoretical distributions, 
the concern should not be critical.

In principle, the D*i k  series at stations can have its 
own statistical distribution while constructing the station 
SPI. However, we deliberately used the same distribution 
decided by the Di

k  series. In this way, any differences be-
tween SPEI and SPI series are attributed to the temperature 
variations (through PET) alone. But, how good (or bad) is 
such an approach? Figures 2a to d respectively show the L-
moment ratio diagrams (abscissa: L skewness 3x ; ordinate: 
L kurtosis 4x ) for station D, D*, SPEI, and SPI series calcu-
lated at 1-month time scale. The estimated ( , )3 4x xY Y  of D and 
D* series are obtained by employing the ascending-ordered 
D and D* series in Eq. (5). The theoretical L-moment ratios 
for two 2-parameter (exponential and Gaussian distribu-
tions) and five 3-parameter (PE3, LN3, GLO, GEV, GPA) 
distributions are also drawn as points and colored lines, re-
spectively. Note that the black point (0.0, 0.1226) represents 
the standard Gaussian normal distribution. Before standard-
ization, large diversity in the estimated ( , )3 4x xY Y  of station D 
and D* series is evident (blue dots), especially in the D se-
ries (Fig. 2a). This is understandable due to the add-on com-
plex of temperature variations. Note that many blue points 
in Fig. 2b cluster around the PE3 curve (dashed olive line). 
It endorses the popularity of the PE3 distribution adopted 
by the local hydrological society in the SPI calculation. Af-
ter standardization, the estimated ( , )3 4x xY Y  of SPEI (Fig. 2c) 
and SPI (Fig. 2d) series converge into the surroundings of 
Gaussian point, indicating the normality. As shown, the de-
gree of convergence in the SPI series is comparable with 
that in the SPEI series. While a distribution with many pa-
rameters is requested by the more complex D series on the 
1-month time scale, it should also satisfy the need of simpler 
D* series, though possibly redundant.

Panels in Fig. 3 show the similar L-moment ratios dia-
grams for the 10-day time scale. At this shorter time scale 
the clustered points run away from the Gaussian point more, 
indicating that both D (Fig. 3a) and D* (Fig. 3b) series be-
come more non-Gaussian. Notice that the ratio diagrams 
recommend the GLO (PE3) distribution for a large portion 
of the D (D*) series. Using a distribution suitable for the D 

series on the D* series would cause some inconveniences 
in the degree of normality of SPI series (Fig. 3d). Never-
theless, the Gaussian requirement for the SPEI series at 
the 10-day time scale is also less satisfied (Fig. 3c). The 
problem is thus not merely attributed to the chosen statisti-
cal distribution. Rather, it likely points out the limitation of 
using the L-moment method for parameter estimation. The 
robustness of L-moments to the outliers also indicates their 
lesser sensitivity to the heavy tailed distributions and thus 
modifications on the L-moments have been suggested (e.g., 
Elamir and Seheult 2003; Hosking 2007). The analysis of 
heavy-tailed data is a critical issue while moving towards 
the higher frequency end. Therefore, the use of SPEI/SPI, 
currently based on the L-moments method, at 10-day time 
scale should be judged with cautions.

In contrast, the aforementioned problem largely disap-
pears for the 3-month time scale (Fig. 4). Both D and D* 
series become more Gaussian. Here, many D* series show 
their preference towards the GPA distribution (Fig. 4b), 
whereas the D series show no such preferences (Fig. 4a). 
Nevertheless, both SPEI and SPI series achieve normality, 
as shown in Figs. 4c and d.

3.2 Griddization

A built-in NCL (NCAR Command Language; NCAR: 
National Center for Atmospheric Research) package, Nat-
grid, is used in this study to interpolate station SPEI/SPI 
data from an irregularly-spaced distribution to a rectilinear 
1-km resolution horizontal mesh. Natgrid implements a 
natural neighbor interpolation method (Sibson 1981) based 
on Watson’s package nngridr (Watson 1992, 1994). One 
distinguishing quality of the natural neighbor interpolation 
method is the way in which a set of neighboring points (i.e., 
the natural neighbors) is selected for interpolating at a given 
point. The selection process avoids the problems common 
to methods based on choosing a fixed number of neighbor-
ing points or all points within a fixed distance. Natgrid uses 
a weighted average method that is more sophisticated than 
the usual inverse distance weighted average method. An-
other distinguishing quality of this method is the way that 
the weights are calculated for the functional values at the 
natural neighbor coordinates. These weights are based on 
proportionate areas rather than distances. Note that the cur-
rent package does not allow any missing values in the input 
data. Readers interested in the theoretical/technique details 
should refer to Watson’s books (1992, 1994).

The above griddization method is implemented in the 
empirical orthogonal function (EOF) space rather than di-
rectly in the physical space. The orthogonality property 
of EOF provides a complete basis where the time-varying 
SPEI (or SPI) field can be decomposed into

( , ) ( ) ( )t s T t S sSPEI k kk
N
1= =/  (6)
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(a) (b)

(c) (d)

Fig. 2. L-moment ratio diagrams for station (a) D (i.e., P minus PET), (b) D*, (c) SPEI, and (d) SPI time series calculated at the time scale of 1-month 
are shown as tiny blue points. The theoretical L-moment ratios for Pearson type III (PE3; dashed olive line), log-normal (LN3; dashed black line), 
generalized logistic (GLO; dashed red line), generalized extreme-value (GEV; dashed blue line), generalized Pareto (GPA; solid black line), expo-
nential (Exp; olive point), and normal (large black point) distributions are also shown as lines and points with L skewness ( )3x  and L kurtosis ( )4x  
as the abscissa and ordinate coordinates, respectively.

(a) (b)

(c) (d)

Fig. 3. The configurations are the same as in Fig. 2, except for the 10-day time scale.
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Where Tk and Sk, the k’th principal component and the k’th 
Eigen pattern, are time-dependent and space-dependent 
alone, respectively. The above interpolation scheme is first 
implemented on each Sk pattern to convert it into Gk mesh 
(G denotes gridded level) and then summed up through  
Eq. (6) where Sk is replaced by Gk to obtain the gridded SPEI 
(or SPI). To alleviate/remove the local noise, the summation 
is terminated when the leading EOFs [denoted as symbol N 
in Eq. (6)] together explain the 99% of the total variance 
amount.

4. unCErTAInTy AnD ClIMAToloGy
4.1 uncertainty

If the calculated SPEI/SPI series were truly Gaussian, 
the mean (n) of the series is then zero and the standard de-
viation (v) is 1, i.e., SPEI/SPI ~ N(0, 1). Note that a SPEI 
(SPI) of zero indicates a value corresponding to 50% of the 
cumulative probability of D (D*) value in the selected dis-
tribution. To examine the expected normality, Figs. 5 and 6 
respectively show the spatial distributions of the estimated 
means (nX) and standard deviations (vX) of gridded SPEI/
SPI at 10-day, 1-, and 3-month time scales. The nX  of SPEI 
at 10-day scale shows a slight dry-bias to the southwest of 
Taiwan, whereas it expresses a slight wet-bias in the south-
ern tip of CMR at both 1- and 3-month scales. The former 
one (latter ones) is (are) associated with slightly over- (un-

der-) estimated vX  in the surrounding areas. Similar slight 
wet-bias associated with underestimated variability is also 
found to the southwest of Taiwan for SPI at 1- and 3-month 
scales. At 10-day scale, however, the nX  (vX) of SPI express-
es a larger spread of wet-bias (underestimated variability) 
in the western plains interfered with “bulls eye” of dry-bias 
(overestimated variability) in its southwestern corner. In ad-
dition, a slightly underestimated vX  appears in the northeast-
ern coast for SPEI at 3-month scale and for SPI at all three 
scales. Conclusively, larger uncertainty is mainly found at 
the 10-day SPEI scale as well as SPI, and over the west/
southwest regions. Note that these regions have distinguish-
ing dry and wet seasons around the year.

To further examine the model uncertainty at the season-
al time scale, panels in the left, middle, and right columns of 
Fig. 7 show the mean monthly-mean differences averaged 
in January, April, July, and October (from-top-to-bottom) 
between the estimated D (i.e., DX ) and observed D series 
( )D D+X  at 10-day, 1-, and 3-month scales, respectively. The 
DX  series are obtained from the quantile functions of site-
dependent statistical distributions. Regardless of which time 
scale, larger model errors occur in the warming months and 
generally over the remote mountainous areas. This implies 
that either the selected statistical distribution is still inappro-
priate or the imputed precipitation and/or temperature exists 
larger uncertainties therein (cf. Weng and Yang 2012). Fur-
thermore, the employed distributions tend to overestimate 

(a) (b)

(c) (d)

Fig. 4. The configurations are the same as in Fig. 2, except for the 3-month time scale.
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the D series (i.e., wetter). In April, +0.5 ~ +1.0 mm day-1 
wet bias can be found in the southern portion of CMR at 
1- and 3-month time scales. In July, the wet-bias reaches  
+2.0 mm day-1 over the western plains (southwestern plains 
and East Rift Valley) at 10-day (1-month) time scale. Note 
that at 3-month scale a dry-bias with -3.0 mm day-1 error 
also appears in the foothills of southern part of CMR.

Different panels in Fig. 8 shows similar results but 
examines the mean monthly-mean differences between the 
estimated D* (i.e., D*[ ) and observed D* series ( )D D* *-[ . As 
shown, the model uncertainty in D*[  series is in general small-
er than the DX  series. Regardless of which month and which 
time scale, some sporadic wet-biases (+0.3 ~ 0.5 mm day-1)  
can be found in the eastern/northeastern areas of Taiwan. 
In July, however, large dry-biases reaching -4.0 mm day-1  
are found in the foothills of southern CMR at 3-month 
time scale. Similar dry-bias (-1.0 ~ -2.0 mm day-1) also 
appears in the East Rift Valley regions in October. Is a  
3.0 - 4.0 mm day-1 error in the mountainous areas accept-
able? Mean rainfall accumulation at Alisan (the nearest ref-

erence station) is 608.4 mm in July (1960 - 2012 averaged), 
which is equivalent to 19.6 mm day-1. The largest relative 
error is thus about 15.3 - 20.4%, which reflects the statistical 
stability data scarcity problem in the mountainous areas.

To explore the effects of interannual temperature vari-
ability on the regional water balance, Fig. 9 shows the mean 
seasonal correlations between the SPEI and SPI series at the 
1-month scale. Lower (higher) correlations indicate larger 
(smaller) interfering effects of temperature changes. To 
highlight the regions sensitive to the temperature factor, the 
correlations were subtracted from 1.0. The sensitive regions 
extend northward from the southern tip of Taiwan in spring 
(March-to-May; MAM) to the entire western plains in fall 
(September-to-November; SON). The sensitivity largely in-
creases over the southwestern plains in winter (December-
to-February; DJF). In DJF, water balance in the southeastern 
regions is also interfered with by the temperature variabil-
ity. The decreasing (increasing) temperature effect in the 
warming MAM and JJA (cooling SON and DJF) seasons 
implies the more active (passive) role of rainfall processes 

Fig. 5. The spatial distributions of estimated means (1960 - 2012) of 
gridded SPEI (left column) and SPI (right column) at 10-day (upper 
panels), 1-month (middle panels), and 3-month (lower panels) time 
scales.

Fig. 6. The spatial distributions of estimated standard deviations (1960 
- 2012) of gridded SPEI (left column) and SPI (right column) at 10-day 
(upper panels), 1-month (middle panels), and 3-month (lower panels) 
time scales.
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controlling (controlled by) the temperature change during 
the rainy (arid) seasons.

4.2 Climatology

Figures 10 and 11 respectively show the spatial dis-
tributions of the climatological-means in the SPEI and SPI 
at 10-day time scale. Only the means in the 1st and middle 
days of each month are presented. Since both SPEI and SPI 
series at specific station are generated using the same statis-
tical distribution, any differences between them are caused 
by the temperature factor alone (via PET). Although resem-
bling each other, the evolutionary wet/dry climate described 
by the SPEI and SPI patterns indicates that the degree of 
wetness (dryness) in the period of 15 April - 15 October (1 
November - 1 April) decreases after taking the temperature 
factor into account. The reduction in wetness in the warm-
ing period due to the increased PET is found mainly in the 
southwestern regions facing the prevailing southwesterly 
winds, whereas the regions with reducing dryness in the 
cooling period due to the decreased PET are located in the 
northeast/north coasts in early winter facing the prevailing 
northeasterlies and later in the northwest/west coasts facing 
the prevailing northwesterlies.

The SPEI patterns feature drier southwestern plains in 
the 1 May and 15 May phases before the South China Sea 
(SCS hereinafter) monsoon (i.e., Meiyu-Baiu) onset, the so-
called pre-summer monsoon heating phenomenon, and the 
subsequent fast transition into the wet phase. Furthermore, 

it also highlights the mid-summer drought phenomenon dur-
ing the monsoon break (Asai and Fukui 1977; Ho and Wang 
2002; Karnauskas et al. 2013) in July. Both climatic phe-
nomena cannot be clearly addressed by the SPI patterns.

One of the distinguishing SPEI (and SPI) features is 
that it can be calculated at different time scales to monitor 
drought and moist conditions in different hydrological sub-
systems (Vicente-Serrano et al. 2010). At a shorter (longer) 
time scale, the drought and moist periods have shorter (lon-
ger) duration but a higher (lower) occurrence frequency. It 
is also important to understand how the temperature factor, 
coming through PET, is involved with different time scales 
for soil wetness, river discharge, reservoir storage, and even 
the long-term groundwater variability. Figure 12 shows the 
climatic SPEI and SPI patterns in January, April, July, and 
October at the 1-month time scale. It is immediately recog-
nized that the degree of water surplus/deficit and dry-to-wet 
contrast described by the monthly SPEI pattern is more se-
vere than what we expect compared to SPI as well as SPEI at 
the 10-day time scale. For example, the mid-summer drought 
in July (cf. Fig. 10) is in fact more durable in northern Tai-
wan. In addition, contrasts between SPEI and SPI patterns 
show that using the SPEI degree of local wetness described 
by SPI in July decreases, whereas the degree of local dryness 
in April and October increases over the southwestern and 
western parts of Taiwan. In January, however, the degree of 
dryness decreases island-wide in the mid-winter.

Similar contrasts between SPEI and SPI patterns are 
also evident in the 3-month time scale (Fig. 13). Notice-
ably, the dry-to-wet contrast between the western (south-
western) and eastern (northwestern) Taiwan in November 
(May), which represents the overall condition during the fall 
(spring) season, is emphasized by the SPEI pattern in this 
seasonal time scale. In February, the SPEI pattern also high-
lights the “Dongyu” (freezing wintertime rainfall in Chinese) 
phenomenon in the northeast horn of Taiwan comprising the 
Northeast/Yilan National Scenic Area and Lanyang Plain, 
facing the prevailing northeasterly monsoon winds.

5. APPlICATIon: InTErAnnuAl vArIABIlITy 
of SPrInGTIME DrouGhTS

With long-term (1960 - 2012), multi-scalar, and 1-km 
gridded SPEI/SPI datasets becoming available, researchers 
in various disciplines are ready to conduct various applica-
tions related to the high-resolution analyses such as veri-
fication of regional hydrological aspects associated with 
historical typhoon events (e.g., Hsiao et al. 2013; Shih et 
al. 2014) and interactions between vegetation and climate 
system (e.g., Hickler et al. 2005; Heumann et al. 2007; Jain 
et al. 2009). Utilizing the established datasets, tasks are un-
derway inside the TCCIP working group. As an example, 
preliminary results regarding the springtime drought prob-
lem are briefly reported in this section.

Fig. 9. The mean seasonal correlations between the SPEI and SPI time 
series on the 1-month time scale. Note that the correlations are sub-
tracted from 1.0 while drawing the results.
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5.1 regional Aspects

The interannual variability in spring rainfall in Tai-
wan is largely associated with El Niño-Southern Oscilla-
tion (ENSO) (Wang and Hwu 1994; Chen et al. 2003, 2008, 
2013). Analyses conducted in previous studies still relied 
on the station-level data and often attempted to identify the 
top-down causal relationship between the large-scale low-
frequency variability as the cause and the regional hydro-
climate response. To provide a holistic spatial distribution 
perspective regarding the regional variability in dry/wet 

conditions during the springtime, anomalies (respect to the 
1960-to-2012 mean) of gridded SPEI with the 3-month time 
scale in May, which represents the overall MAM condition, 
are subject to EOF analysis (EOFA). To test the high-reso-
lution analysis robustness, we also used the SPEI series at 
28 CWB/SYNOP stations (cf. black dots in Figs. 14b or 15b 
for their geographical locations) to conduct the same EOFA. 
The raw rainfall and temperature records at these opera-
tional stations are relatively complete. In both high and low 
resolution analyses, only the first two EOF modes are statis-
tically significant according to North’s rule of thumb (North 

Fig. 12. The climatological-means spatial distributions in the SPEI 
(left column) and SPI (right column) at 1-month time scale in January, 
April, July, and October (from-top-to-bottom).

Fig. 13. The climatological-means spatial distributions in the SPEI (left 
column) and SPI (right column) at 3-month time scale in February, May, 
August, and November (from-top-to-bottom).
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et al. 1982) and individually explain 69.8 and 11.4% (60.6 
and 12.2%) of the total variability of the gridded (station) 
anomalies, respectively.

Figure 14 shows the first EOF (EOF1) patterns for 
the gridded (Fig. 14a) and station (Fig. 14b; after spatial 
interpolation) anomalies and the corresponding time series 
principal components (PC1s; Fig. 14c). The correlation co-
efficient of these two PC1 series between high (histogram) 
and low (red line) resolution analysis is 0.98, indicating a 
highly coherent time evolution. The EOF1 pattern of the 
low-resolution analysis shows a smooth structure with larger 
(smaller) weights located in the southwestern plains (north-
east horn) of Taiwan. The central portion of mountainous 
Taiwan also has a smaller weight (cool colors), whereas the 
northwestern region shows a larger weight (warm colors). 
While the gross feature is similar, the high-resolution analy-
sis expresses a much finer spatial structure. Centering in the 
middle between Kaohsiung and Tainan district (cf. Fig. 1c), 
EOF1 pattern puts more weights on the entire southwestern 
and western plains suggesting that these regions are most 
vulnerable to the threat of springtime drought/flood in some 
years. The larger vulnerability also covers the northwestern 
region including the Shei-Pa national park to its southeast. 
Note that the smaller weight previously in Central Taiwan 
now shifts to the southern part of the CMR but the one pre-
viously in the northeast horn keeps stagnant.

The second EOF (EOF2) patterns for the high- and low-
resolution analyses and the corresponding PC2 are shown in 
three panels of Fig. 15. The correlation coefficient of two 
PC2 series between the high and low-resolution analysis 
reaches 0.87, significant at 0.5% level. Unlike the island-
wide coherence in the EOF1, spatial distribution of EOF2 
pattern in both high (Fig. 15a) and low (Fig. 15b) resolu-
tion analyses expresses a north-to-south dipole structure of 
negative-to-positive SPEI anomalies indicating the coexis-
tence between a wetter south and a drier north. As shown 
in Fig. 15c, the SPEI magnitude in some particular years 
is smaller (larger) than -0.84 (0.84), reaching the moderate 
drought (flood) severity according to Agnew’s classifica-
tion (Agnew 2000) and thereby implying a ‘southern flood 
(drought) vs. northern drought (flood)’ pattern. For the high-
resolution analysis, the negative SPEI anomalies (shaded in 
warm colors) centering in the Taipei Valley (cf. Fig. 1c) 
is accompanied by the positive anomalies (shaded in cool 
colors) centering in the southwestern Pingtung Plains. The 
former stretches southeastward to the upper part of the East 
Rift Valley, whereas the latter stretches northwestward to-
wards the western plains. Such detailed stretching is almost 
absent in the low-resolution analysis. In addition, there is a 
mismatch of the positive anomalous center between the low 
and high-resolution analysis.

We can use the PC series to assess the influence of 
temperature on the dry (or wet) severity. This is achieved 
by correlating the anomalous gridded SPI series with the PC 

series obtained from the EOFA of gridded SPEI anomalies. 
The resultant correlation maps are shown in Fig. 16. Since 
both SPEI and SPI share the same statistical distribution, 
the regions with lower (higher) absolute values of correla-
tions imply a higher (lower) influence of temperature on the 
relative dry/wet severity. The resultant correlation map of 
EOF1 (Fig. 16a) indicates that the influences of tempera-
ture are mainly in the plains areas including the southwest-
ern Pingtung Plains, East Rift Valley, Taipei Valley, and 
northeastern Lanyang Plains, consistent with the contrasts 
in climatic settings between the SPEI and SPI in May (cf. 
Fig. 13). In contrast, the relative dry/wet conditions over the 
mountainous areas and western plains north of Tainan are 
determined mainly by the absence/presence of precipitation 
but less affected by the temperature variability.

In contrast, the correlation map of EOF2 (Fig. 16b) 
shows a coherent relationship between the positive (nega-
tive) anomalies to the southern (northern) Taiwan and the 
superimposed positive (negative) correlations. Near the 
positive/negative action centers, larger anomalies are asso-
ciated with higher correlations (in absolute values), suggest-
ing that the north-south diploe structure is primarily attrib-
uted to the rainfall processes and the temperature variability 
only plays a minor role.

5.2 large-Scale Associations

To shed some light on seeking the potential sources for 
the variability of regional wet/dry conditions in spring, we 
conducted composite analysis on the seasonal-mean sea sur-
face temperature [SST; data source: Hadley Centre Sea Ice 
and Sea Surface Temperature data set (HadISST); Rayner et 
al. 2003], low-tropospheric (850 hPa) winds, and associated 
stream function anomalies using data reanalyzed by the Na-
tional Centers for Environmental Prediction-National Cen-
ter for Atmospheric Research (NCEP-NCAR) (Kalnay et al. 
1996). The composited difference is calculated between the 
ensemble averages of the anomalies in the selected 7 driest 
springs and in the 7 wettest springs (according to the PC 
series) before being divided by two. The Monte Carlo white 
noise test (Overland and Preisendorfer 1982) with 5000 
resampling among non-repeated 53 years (1960 - 2012) 
is used to test the local SST significance and vector wind 
anomalies at the 0.1 confidence level.

The resultant composite corresponding to the EOF1 of 
regional SPEI anomalies is shown in Fig. 17a. When an is-
land-wide drying event occurs (cf. Fig. 14a), Taiwan as well 
as southeastern China is well-situated under the influence of 
an anomalous anticyclonic circulation. Furthermore, the as-
sociated east-northeast wind anomalies with downslope sub-
sidence are prone to the formation of dry condition over the 
southwestern-to-western plains of Taiwan after crossing the 
CMR. As shown, the above regional anomalies are in fact 
only a part of large-scale circulation anomalies posited in the 
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vast western and northern Pacific oceans. To the northeast 
direction, an anticyclonic gyre in the North Pacific Ocean 
is associated with warm SST anomaly (SSTA) in the cen-
tral Pacific and cold SSTA on the west coasts of the North 
American Continent, resembling a low-frequency Pacific 
Decadal Oscillation pattern (PDO; Mantua et al. 1997; see 
Mantua and Hare 2002 for a review) in its negative phase. 

The atmospheric-oceanic anomalies configuration herein sig-
nifies the weakened Aleutian low, southwestward displace-
ment of western North Pacific Subtropical High (WNPSH), 
and weakened East Asian jet aloft (not shown). The rainfall 
activity associated with the frequent westerly disturbances 
within the mid-latitude frontal system is thus retarded over 
the south-to-southeast China, Taiwan, and north Philippines, 

(a) (b)

(c)

Fig. 14. (a) The first EOF pattern for gridded SPEI-3m anomalies in May (1960 - 2012). (b) The first EOF pattern for SPEI-3m anomalies at 28 sta-
tions (black points) in May (1960 - 2012). (c) The corresponding principal component time series for gridded SPEI-3m (histograms) and for station 
SPEI-3m (red curve) anomalies.

(a) (b)

(c)

Fig. 15. The configurations are the same as in Fig. 14, except for the second EOF mode.
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(a) (b)

Fig. 16. The correlation maps between the anomalous gridded SPI series and (a) the PC1 series and (b) the PC2 series obtained from the EOFA of 
gridded SPEI anomalies.

(a)

(b)

Fig. 17. The composited SST spatial distribution (color shadings), 850-hPa vector wind, and stream function (contours; contour interval is  
2.0 × 106 m2 sec-1) anomalies in MAM related to (a) the first and (b) the second EOF of the gridded SPEI-3m anomalies in May. Only locally sig-
nificant SST and wind vectors at 1.0% level are shown.
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but enhanced over the Yangtze River-to-Yellow River region 
in east China, Korea, south Japan, and south Philippines, ac-
cording to the composite analysis using APHRODITE (stands 
for Asian Precipitation Highly-Resolved Observational Data 
Integration Towards Evaluation of Water Resources, cf. 
Yatagai et al. 2012) data (not shown).

To the southeast direction, an anomalous cyclonic cir-
culation in the Philippine Sea-to-tropical western Pacific is 
accompanied by a wedge-shaped warm SSTA pattern with 
equatorial symmetric maximum appearing near the Niño 4 
region (averaged SSTA in the 5°N - 5°S, 160°E - 150°W 
domain). Meanwhile, cold SSTA appear in the far eastern 
tropical Pacific south of equator. Notice that the Philippine 
Sea low-level cyclonic anomaly has a ‘little brother’ over 
the Solomon Islands in the southern hemisphere and is asso-
ciated with a upper-level anticyclonic anomaly (not shown), 
suggesting the Matsuno-Gill-type pattern (Matsuno 1966; 
Gill 1980) in response to the equatorial warm SSTA forcing 
west of the dateline. The low-latitude atmospheric and oce-
anic scenarios just described are reminiscent of the tropical 
Pacific-East Asian teleconnection pattern during the turn-
about of cold ENSO phase (Wang et al. 2000). However, 
a classic quadrupole response of the Gill’s atmosphere to 
the equatorial heating is obscure east of the dateline and is 
asymmetric with respect to the Equator west of the dateline. 
Meanwhile, the presumed cold (warm) SSTA to the north-
western flank of Philippine (anti) cyclonic anomaly due to 
the local air-sea interactions (Wang et al. 2000) is statisti-
cally insignificant.

As a result, when we initiate the analysis from the re-
gional perspective, a hybrid large-scale teleconnection pat-
tern is likely formed from the combination of tropical and 
mid-latitudinal anomalous circulations. In other words, the 
general notion: the excess (deficient) spring rain in Taiwan 
can be attributed to the strengthened southwesterly (north-
easterly) winds induced by the anomalous Philippine anti-
cyclone (cyclone) which is maintained by the local air-sea 
interactions during the decaying stage of warm (cold) ENSO 
phase, needs to be scrutinized (cf. Chen et al. 2008).

The PC1 series (Fig. 14c) identifies seven springtime 
drought events (values > 1.5) in 1963, 1964, 1971, 1980, 
1991, 2002, and 2003. Among them, drought(s) in 1964 and 
2003 (1971) were (was) after moderate El Niño (moder-
ate La Niña) winter, according to the Oceanic Niño Index 
(ONI; The ONI is the running 3-month mean SSTA for the 
Niño 3.4 region, i.e., 5°N - 5°S, 120 - 170°W) based on the 
ERSSTv4 data (Huang et al. 2015). The PC1 also identifies 
the seven wettest springs (values < -1.5) in 1978, 1983, 1984, 
1990, 1992, 1996, and 2001. Three of them (1978, 1992, 
1983) were after weak-to-very strong El Niños, whereas an-
other three years (1984, 1996, 2001) were all after weak La 
Niñas. The correlation between PC1 series and ONI in the 
preceding winters is nearly zero. Similar results are fairly 
true when other commonly used Niño indices (such as Niño 

1+2, Niño 3, Niño 4, TNI (Trans-Niño Index), and Niño-
west; cf. http://www.cpc.ncep.noaa.gov/data/indices/ for 
their definitions) are examined. In recent years, nontradi-
tional El Niño events were observed. This phenomenon is 
called El Niño “Modoki” (similar but different in Japanese; 
Ashok et al. 2007) or Central Pacific (CP) El Niño (Kao and 
Yu 2009). However, the correlations between the PC1 and 
El Niño Modoki index (EMI; Ashok et al. 2007) are 0.19 in 
lag-1 season and 0.27 in lag-0 season. Both are insignificant 
statistically. Therefore, a conclusive relationship between 
the dry/wet springs in Taiwan and the cold/warm phases of 
ENSO or El Niño Modoki has yet to be accomplished.

As mentioned previously, the composited SSTA distri-
bution in the North Pacific resembles the negative phase of 
the low-frequency PDO teleconnection pattern. The seasonal 
PDO index, which is defined as the first PC of the EOFA of 
seasonal SSTA in the North Pacific north of 20°N (Zhang et 
al. 1997), is calculated and then correlated with the SPEI-
PC1 series. While the correlation in the lag-1 season is -0.32, 
it reaches -0.43 in the lag-0 season which is significant at 
the 0.1-level. It thus suggests that except for the tropical in-
fluences, which seem to be case dependent, the interannual 
variability in circulation and SST in the North Pacific regime 
in the preceding seasons could also play some roles in affect-
ing the springtime dry/wet conditions in Taiwan, though its 
detailed process needs to be further explored.

Figure 17b shows the composited large-scale SST and 
low-level circulation anomalies related to the ‘southern flood 
vs. northern drought’ regional pattern (cf. Fig. 15a) described 
by the EOF2. To the southwest (northwest) of Taiwan, the 
low-level west-northwest (west-southwest) wind anomalies 
appear in the northern part of the SCS (Yangtze River Val-
ley). The associated upper-level trough deepens in the east-
ern coasts of the Indochina Peninsula, the coasts of southern 
China, and the northern part of the SCS (not shown), thereby 
enhancing the rainfall activity in the southwestern corner of 
Taiwan. Increased rainfall also appears in the adjacent re-
gions of Vietnam and northern part of the Philippines based 
on the APHRODITE analysis (not shown). The cold SSTA 
therein are in response to the atmospheric forcing via the 
Ekman pumping. To the northeast (southeast) of Taiwan, 
an anomalous anticyclonic (cyclonic) gyre is found in the 
western subtropical (tropical) Pacific. Between them, the 
bifurcate easterly anomalies with the ridge line stretching 
westward towards the east coasts of Taiwan are well-posited 
near the northeast horn of Taiwan, resulting in the rainfall 
deficits there. The decreased rainfall signal also extends 
westward into Fujian and Zhejiang provinces over southeast 
China (not shown).

In the western Pacific sector, a conspicuous wave train 
pattern with north-south orientation emanates from the 
equatorial Pacific near the dateline. Note that another wave 
train pattern with the opposite anomalous cyclone and anti-
cyclone phase is juxtaposed in the eastern Pacific north of 

http://www.cpc.ncep.noaa.gov/data/indices/
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20°N. The above anomalous circulations in the pan-North 
Pacific basin vertically express a barotropic (baroclinic) 
structure north of 20°N (within the deep tropics), whereas 
the Philippine Sea cyclonic anomaly tilts northwest accom-
panying the upper-level cyclonic circulation over the north-
ern part of the SCS (not shown). Within the low-latitudes 
equatorial westerly anomalies which suppress the upwell-
ing and thicken the thermocline depth could cause the warm 
SSTA (≥ 0.5°C) in the central to western tropical Pacific. 
The cold SSTA strip near the northern Marianas may be 
induced by various processes or their combination. The cy-
clonic anomaly may raise the off-equator thermocline via 
Ekman pumping leading to the decrease in SST. The en-
hanced northerlies in the northeastern flank in this season 
also reduce the SST via wind-evaporation feedback. It is 
also likely that such cold SSTA, which extends westward to 
the east coasts of the Indochina Peninsula and eastward to 
the north of the Hawaiian Islands, is ignited in response to 
the atmospheric forcing and signifies the equator ward shift 
in mid-latitude westerlies in East Asia.

It is intriguing that the western Pacific wave train at-
tains a spatial pattern similar to the positive summertime 
Pacific-Japan (PJ) teleconnection pattern phase (Nitta 1987). 
The positive (negative) active centers of height anomalies 
are near Japan and the Aleutian Islands (over the Philippines 
and Okhotsk Sea). The summertime PJ pattern has been in-
terpreted as a remote response to the basin-wide warming 
SSTA over the Indian Ocean after El Niño, which suppresses 
the convection over the Philippines and enhances the Meiyu/
Baiu rain band in East Asia (Xie et al. 2009). However, our 
springtime version of the PJ-like pattern shows its associa-
tion with the SSTA in the central tropical Pacific Niño 4 re-
gion rather than in the Indian Ocean. The associated rainfall 
activity shows a sandwiched pattern, namely the suppressed 
rain in southeast China (including the northeast Taiwan) is 
accompanied by the enhanced rain in the Vietnam-Philip-
pines to its south and in the Yangtze river basin-Korea-Japan 
to its north (not shown), which is not fully consistent with 
the typical summertime PJ related rainfall pattern. Although 
four out of the chosen seven years (1966, 1969, 1977, 2010; 
cf. Fig. 15c) in the positive phase of composite analysis 
are indeed after weak-to-strong El Niños, two out of seven 
(1972, 2002) are actually before moderate-to-strong El Ni-
ños. The correlation between PC2 series and concurrent (lag-
1 season) Niño 4 index is only 0.24 (0.10). The correlation 
between the PC2 series and summertime PJ index, which 
is commonly defined as the difference in 850-hPa geopo-
tential height anomalies between two grid points (155°E, 
35°N: region east of Japan and 125°E, 22.5°N: region east of 
Taiwan) (Wakabayashi and Kawamura 2004), is only 0.13. 
None of them are statistically significant. Whether the de-
tected springtime PJ-like pattern represents a physical mode 
and its possible linkage with other known climate modes is 
worth further exploration.

6. SuMMAry

A complete (without missing values), long-term (1960 
- 2012), and high-resolution (1-km) gridded data bank in-
cluding both SPEI and SPI at various time scales (from  
10-day to 2-yr) has been constructed as one of the data in-
tegration tasks in the TCCIP project. Such tasks will not be 
materialized without the pivotal role played by the NCDR/
MOST in collaboration with several governmental agencies 
during the data collection phase (cf. Fig. 1a). Only the re-
sults at 10-day to 3-month scale are shown in this study. 
Apart from facilitating the diagnostics of climatic processes 
related to the regional hydro-climate variability, the estab-
lished quasi-observed gridded data, which use gauge re-
cords alone, serve as the ground truth to correct the model 
biases while using state-of-art dynamical RCMs to project 
future hydro-climate change and impact assessment in the 
regional scale. It also serves as the historical baseline in 
the statistical downscaling while developing the statisti-
cal relationship between the large-scale GCM outputs and 
fine-scale observational data. Moreover, the introduced 
SPEI uses both rainfall and surface air temperature as input, 
which is in contrast to the conventional SPI that is based on 
rainfall alone. This would allow the SPEI to account for the 
increased warming almost certainly in the coming decades 
(Solomon et al. 2007; IPCC 2014) on the devastating risk of 
drought in the East Asia (Dai 2011; 2013). The established 
gridded SPEI/SPI datasets are accessible for interested re-
searchers through the data service platform at NCDR: http://
tccip.ncdr.nat.gov.tw/ds/.

After acquiring the complete station rainfall and tem-
perature series via the missing data imputation technique (Si-
molo et al. 2010) and calculating PET via the Thornthwaite 
method (1948) to obtain the D series, this study proposes a 
site- and scale-dependent posterior fitness assessment pro-
cedure to standardize the D series and thereby SPEI. The 
procedure is comprised of 3 steps to attain the optimal stan-
dardization. Firstly, the specific D series is modeled using 
nine commonly used statistical distributions (GAM, GUM, 
PE3, LN3, GLO, GEV, GPA, KAP, and WKA). There, the 
L-moment method is employed to estimate the parameters 
associated with individual distributions. Secondly, the esti-
mated parameters are used to obtain distribution-dependent 
SPEI after inversely mapping the associated CDF to the pro-
bit function of standard Gaussian distribution. Thirdly, the 
distribution-dependent SPEI series are used to calculate the 
corresponding L skewness 3x  and L kurtosis 4x  via the L-
moments based on the PWMs. The distribution that has the 
smallest Euclidean distance between the estimated ,( )3 4x xY Y  
and (0, 0.1226), the theoretical ( , )3 4x x  of the standard 
Gaussian distribution, is then chosen as the most appropri-
ate one to standardize the D series (cf. Fig. 1b). Such a strat-
egy intends to provide a near-normal SPEI to facilitate using 
well-established methods (such as EOFA) for the Gaussian 

http://tccip.ncdr.nat.gov.tw/ds/
http://tccip.ncdr.nat.gov.tw/ds/


Shu-Ping Weng644

process. Note that in this study we used the same statistical 
distribution to construct both the SPEI and SPI at the same 
stations and scales. Through direct comparison between 
them, possible temperature variability effects on the dry/wet 
condition at different time scales can be highlighted.

The L-moment ratio diagrams (Figs. 2 - 4) show that 
the uncertainty of the employed statistical models is higher 
at the shorter 10-day time scale in both SPEI and SPI series 
which is in response to the larger non-Gaussian D and D* se-
ries. There, only the marginal normality can be attained. The 
cause is likely due to L-moment method use in the parameter 
estimations of heavy-tailed distributions and future refine-
ment is needed (Hosking 2007). Spatially, SPI (SPEI) at this 
time scale has the wet (dry) bias with underestimated (over-
estimated) variance mainly over the western (southwest-
ern) plains (Figs. 5 - 6). Seasonally, SPEI at different time 
scales all express the overall wet bias with maximum around  
2 - 3 mm day-1 in spring and summer seasons (Fig. 7), 
whereas SPI mainly shows larger dry bias in summer with 
maximum around 4 mm day-1 over the southern part of CMR 
(Fig. 8). In the worst scenario, this is roughly equivalent to 
15 - 20% relative error with respect to the mean seasonal ac-
cumulation over the data scarce regions. Figure 9 shows that 
the southwestern-to-western plains, especially in SON and 
DJF seasons, are sensitive to the temperature effect while 
considering the interannual variability in regional water bal-
ance. This is inconsistent with the finding in section 5 when 
studying the springtime variability (cf. Figs. 14 and 16a).

The observed mean wet/dry climate contrasts between 
the SPEI and SPI patterns at the 10-day time scale (Fig. 10 
vs. Fig. 11), namely the degree of wetness (dryness) decreas-
es in the warming (cooling) period, are mainly found in the 
windward regions facing the prevailing seasonal winds and 
is accounted for by the increased (decreased) PET during the 
southwesterly (northeasterly) monsoon. At this short time 
scale SPEI is able to highlight the pre-summer monsoon 
heating and mid-summer drought phenomena climatologi-
cally occurring in the first half of May and July, respectively. 
Similar contrasts are also observed at 1-month (Fig. 12) and 
3-month (Fig. 13) seasonal time scales and suggest a more 
passive role of wintertime low temperature (thereby a lower 
PET) caused by the passage of dynamic rainfall processes 
and a more active role of summertime high temperature 
(thereby a higher PET) which may result in the thermody-
namic rainfall process. Therefore, different temperature fac-
tor roles occur through the PET that affect the local dry/wet 
conditions between warm and cold months/seasons can be 
identified easier using the SPEI.

As an application example, the gridded SPEI-3m data 
in May are used to study the interannual variability in spring-
time drought problem in Taiwan. The EOFA identifies two 
dominant modes, one with an island-wide coherent dry (or 
wet) pattern emphasizing the southwestern/western plains 
(Fig. 14) and the other with a north-south orientated dry-

to-wet dipole pattern (Fig. 15). The correlation pattern be-
tween the PC1 series and gridded SPI anomalies (Fig. 16a) 
suggests the temperature effect importance on the regional 
water balance over the Pingtung Plains, East Rift Valley, 
Taipei Valley, and Lanyang Plains. In contrast, the correla-
tion pattern between the PC2 series and gridded SPI anoma-
lies (Fig. 16b) suggests that the dipole pattern formation is 
attributed mainly to the rainfall variability and temperature 
effect is likely negligible.

The composite analysis results (Fig. 17) indicate that, 
from the regional perspective, the island-wide EOF1 dry-
ing pattern in spring is in part attributable to the interannual 
PDO fluctuations in the North Pacific and is in some cases 
associated with the ENSO turnabout in the tropical Pacific 
during their negative phases. Both likely coordinate to form 
an anomalous anticyclone over Taiwan with downslope 
subsidence strengthening the drought condition in the west-
ern and southwestern plains. The large-scale environment 
associated with the ‘southern flood vs. northern drought’ di-
pole pattern of EOF2 expresses a low-level convergent zone 
extending from the northern part of SCS eastward to the 
northern Marianas and a low-level divergence with bifur-
cated easterly anomalies near the east coasts of Taiwan. The 
dipole pattern with regional dry/wet variability is consistent 
with the enhanced (suppressed) rainfall activity in Vietnam 
and the northern Philippines (southeastern China). The de-
picted springtime PJ-like wave train pattern is intriguing. 
The physical mechanism behind it and possible connection 
with the summertime PJ pattern are worth further explora-
tion (Weng and Yang, in preparation).
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