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ABSTRACT

This study extends the analytical solution of folding from a single-layer system 
to a multi-layer system composed of layers with varying thicknesses, viscosities and 
matrices, based on the stress distribution of folding with prescribed amplitude and 
wavelength. The parameters and factors affecting fold behavior were normalized to 
dimensionless quantities. In addition to single-layer systems, the influences of indi-
vidual thickness, spacing and viscosity of multiple layers should be of concern. The 
range of matrix thickness where group folding occurs was initially identified and 
found to be smaller than one wavelength. Two-dimensional finite element folding 
simulations were also conducted to confirm the validity of the developed solutions of 
multi-layer folding. The 2D numerical simulation reveals when the matrix is thinner 
than one wavelength, the stress distribution within the matrix becomes linear and 
group folding occurs, and, if the matrix is thicker than one wavelength, the folding 
of the multi-layer system in fact is identical to independent folding of each layer 
alone. By means of stress superposition, this study developed theoretical solutions 
for multi-layer systems. The solutions developed show that the folding of viscous 
multi-layer and viscous matrix systems is time independent. Based on the developed 
solution, the effect of thickness, spacing and viscosity are then presented with the 
other parameters fixed. Finally, the solutions for elastic multi-layer and elastic matrix 
systems are also proposed.
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1. INTRODUCTION

Folding often is been proposed as ductile deformation 
process of geologic structures. Research on buckle-folding 
has existed since the early 1900s (Smoluchowski 1909). The 
study of folds firstly is thus based on the appearance of folds 
observed in the field, then interpreted especially focused on 
formations, wavelengths and thicknesses etc. (Donath and 
Parker 1964; Hudleston 1986; Hudleston and Lan 1993). 
Later, to explore the folding mechanisms, some experimen-
tal laboratory studies are thus been conducted (e.g., Biot 
1961; Hudleston 1973b; Fletcher 1974; Dubey and Cobbold 
1977; Abbassi and Mancktelow 1990, 1992; Mancktelow 
and Abbassi 1992; Treagus and Sokoutis 1992). Meanwhile, 
the theoretical solutions with various material types (elastic, 
viscoelastic, and viscous) considered are developed accord-
ingly (Biot 1957, 1959, 1961; Ramberg 1961, 1963, 1964; 
Currie et al. 1962; Chapple 1968; Smith 1975, 1977, 1979; 

Jeng et al. 2001; Jeng and Huang 2008).
Studies in more sophisticated conditions have been 

conducted, such as single layer systems (Chapple 1969; 
Hudleston 1973a; Hudleston and Stephansson 1973; Treagus 
1973; Cobbold 1975, 1976, 1977; Fletcher 1977; Williams 
et al. 1978; Lan and Hudleston 1991, 1996; Hudleston and 
Lan 1994; Mühlhaus et al. 1994; Hunt et al. 1996a, b; Zhang 
et al. 1996, 2000; Zuber and Parmentier 1996; Mancktelow 
1999; Schmalholz and Podladchikov 1999, 2000; Kocher 
et al. 2008; Frehner 2011), stress-strain analyses (Dieterich 
and Carter 1969; Hobbs 1971; Treagus 1981, 1983, 1999; 
Hudleston et al. 1996; Liu et al. 2016), deformation rates 
(Price 1975; Johnson and Fletcher 1994; Mühlhaus et al. 
1998, 2002a, b; Schmalholz and Podladchikov 2001a, b; 
Schmalholz et al. 2001, 2002; Jeng and Huang 2008), non-
periodic folds (Whiting and Hunt 1997), folding history 
analyses (Schmalholz 2006), multilayer folds (Frehner and 
Schmalholz 2006), and 3D models (Schmalholz and Schmid 
2012; Fernandez and Kaus 2014; Frehner 2016; Damasceno 
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et al. 2017); a brief summary is provided by Price and Cos-
grove (1990). Regarding to the fold studies, analytic solu-
tion of folding mechanism is relative few.

It is said that the deformation of viscous material can be 
a time-dependent behavior. Biot (1961), Currie et al. (1962), 
and Jeng and Huang (2008) revealed that the deformation 
behavior of a viscous single-layer buckling fold embedded 
in a viscous matrix (V-V combination) and an elastic sin-
gle-layer buckling fold embedded in an elastic matrix (E-E 
combination) are both time independent based on a theo-
retical solution. In addition to that, the theoretical folding 
solutions were verified by means of two-dimensional finite 
element method (2D FEM) numerical simulations. The ge-
ometry of the analysis model and boundary constraints are 
similar to those adopted by previous research (Zhang et al. 
1996, 2000; Mancktelow 1999; Jeng et al. 2002; Huang et 
al. 2010). The competent layer enclosed by matrix on both 
sides, and a “roller” constraint. If a perfectly straight layer 
without any perturbation is compressed, the layer is short-
ened without buckling. A perturbation is therefore required 
to induce folding in a numerical analysis and some initial 
geometric configuration different from a perfect-straight 
layer was generally adopted for this purpose (Zhang et al. 
1996, 2000; Mancktelow 1999; Jeng et al. 2002; Huang 
et al. 2010). The adopted perturbation, the end-rotational 
method, involves the imposition of a boundary rotation with 
an angle, small in magnitude, at one end of the competent 
layer. By employing this end-rotation, the shortened layer is 
applied a very small moment, which accounts for the sub-
sequent buckle folding. The perturbation will be applied to 
the boundary at the beginning of the analysis, the system is 
then shortened to the pre-specified strain in one increment 
within the first step, and finally the system buckles, owing 
to this shortening and boundary perturbation, in later incre-
ments and steps.

Though single-layer folds is admittedly common; 
multi-layer folds by no means complex phenomena both in 
field and in reality. Therefore, the primary goal of this study 

is to explore theoretical folding solutions extending from a 
single-layer to a multi-layer system along with the associ-
ated folding behaviors. To better characterize the folding 
behavior of a multi-layer system compared with a single-
layer system, the following fundamental factors should be 
taken into consideration: (1) the spacing between the lay-
ers of a group of folds; (2) the stiffness contrast of each 
competent layer with regard to the matrix; and (3) the more 
complex compositions of different competent layers such as 
the thickness, spacing and viscosity.

To decipher the folding behavior of a viscous multi-
layer system, the matrix repulsion caused by the folding 
is initially studied to obtain the governing equation for 
the multi-layer strata. Once the theoretical solution of the 
governing equation is determined, the relationship and the 
effects of aforementioned factors are then discussed, e.g., 
layer thickness, spacing, viscosity, and competence con-
trast. Subsequently, 2D FEM-based numerical simulations 
are conducted in order to verify the validity of the theoreti-
cal solutions.

2. MATRIX REPULSION OF MULTI-LAYER FOLD 
SYSTEM

Biot (1961), Currie et al. (1962), and Jeng and Huang 
(2008) showed that the matrix repulsion caused by compe-
tent layer folding is an essential component to constructing 
the governing equation of the fold and also plays a major 
role in rendering the theoretical solution. In this study, the 
repulsion interaction between the matrix and the competent 
layers in the buckled fold is initially studied (Fig. 1) and is 
accordingly used to construct the governing equation. The 
obtained governing equation is then solved to determine the 
folding behavior of multi-layer folds.

2.1 Stress Distribution of Sine Wave Deformation in 
Infinite Field

The viscous matrix repulsion caused by competent 

Fig. 1. Schematic diagram and the mechanics of the multi-layered fold. (L: wavelength, S: spacing of the competent layer, equal to the thickness of 
the matrix, h: thickness of the competent layer, f: lateral compressive stress, x - y: 2D coordinate system, qo: matrix repulsion applied to the layer.)
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layer sine-wave folding in a half-space infinite field can be 
written as (Biot 1961)

q t
Y2,o s o 2
2h m= -  (1)

where L2m r=  is the frequency of the fold and Y = Y(x, t) 
is the waveform function that describes the outlook of the de-
formed stratum in the y-direction. The subscript s represents 
a single-layer system. All the symbols are listed and defined 
in Table 1.

In the case of single-layer fold, the competent layer is 
embraced by two half-infinite matrices. The stress caused 
by matrix repulsion in a distance y regarding the competent 
layer can be written as (Biot 1937)

q y e1, ,y s o s
ymv = - + m-^ h  (2)

Figure 2 illustrates the relationship between the normalized 
stress ( q, .y s o sv ) versus the normalized distance (y/L), where 
L is the wavelength of the fold based on Eq. (2). However, 
by using a two-dimensional FEM-based numerical simula-
tion, the stress field of the matrix is also obtained and found 
to be concordant with the prediction of Eq. (2) as depicted in 
Fig. 2. It should be noted that when y/L approaches one, i.e., 
the distance to the fold equals one wavelength, the strain/
stress caused by folding approaches zero (Fig. 2).

2.2 Stress Field Within Matrix of a Multi-Layer  
Folding System

When the competent layers are close to each other, i.e., 
within the range of one wavelength, they are mutually af-
fected, resulting in group folding such that all of the layers 
in the system have the same wavelength and form a har-
monic fold. In this situation, the frequency L2m r=  can 
be imposed onto Eq. (2), where L then becomes the wave-
length of the harmonic fold. Using Eq. (2) and employing 
superposition of the stress fields of two adjacent layers, the 
normalized repulsion ( q, ,y m o sv ) acting on the surface of 
competent layer is then related to S/L as

q L
S e1 2 1

,

,

o s

y m
L
S

2r
v

= - + r-` j8 B (3)

Adequateness of this superposing has been verified using 
numerical analyses, and is to be presented in a later section.

By concurrently using a 2D FEM simulation, we estab-
lish models comprised of six competent layers with viscosi-
ties of 2 × 1020 Pa·s and 2 × 1017 Pa·s along with a contrast 
ratio (Rv) of 1000 for the competent layer and the matrix, 
respectively, where the Rv expresses the viscous compe-

tence contrast by Rv oh h= . Figure 3 illustrates the distri-
bution of q, ,y m o sv  versus S/L obtained from both Eq. (3) 
and the numerical simulation and indicates good agreement.  
Equation (3) offers a good prediction of q, ,y m o sv  versus 
the S/L relationship notably, even when the number of lay-
ers is finite.

The stress distribution within the layers can actually be 
nonlinear, and a direct superposition of the stress intuitively 
yielded by different layers may not necessarily be appli-
cable. We must examine why and how the two approaches 
render the almost identical results shown in Fig. 3. Figure 4 
illustrates the superposed stress field in a matrix where the 
distribution of S/L varies from 2.0 - 0.4, as obtained from 
Eq. (3). The stress at the middle of the matrix vanishes and 
shows its maximum magnitude on the two surfaces of the 
competent layer. As indicated in Fig. 3, when the thickness 
of the matrix S approaches 1.0 L or greater, the repulsion 
stress qo, m approaches that of a single-layer system qo, s. Spe-
cifically, when S ≥ L, the folding behavior of the multi-layer 
system converges to an individual single-layer system such 
that group folding (or harmonic folding) can only occur 
when S < L. Furthermore, when S < L, the stress inside the 
matrix exhibits a linear-like distribution along the y-direc-
tion and vanishes at the center of the matrix (Fig. 4b). The 
predictions of stress distribution shown in Fig. 4 have been 
compared to the results of the 2D FEM simulation and were 
found to have good agreement. Although the stress distribu-
tion along the y-direction can be either nonlinear (Fig. 4a) 
or linear (Fig. 4b), the good agreement suggests that direct 
superposition is admissible and attributable to the linear na-
ture of the material itself. This comparison thus assures the 
validity of Eq. (3), which will then be adopted to construct 
the governing equation for group folding in a later section.

Consequently, when the matrix thickness exceeds one 
wavelength, a multi-layer system can be simplified as a 
single-layer competent folding; this concurs with the one-
wavelength zone of contact concept proposed by Ramsay 
and Huber (1987) from field observations and regressions. 
Furthermore, when the spacing is less than one wavelength, 
the repulsion within the matrix rapidly decreases with its 
thickness and eventually vanishes to zero with a matrix 
thickness of zero [Fig. 3 and Eq. (3)].

3. THEORETICAL SOLUTIONS AND FACTOR 
EVALUTION

3.1 Theoretical Solutions

In considering a multi-layer system having equally 
spaced competent layers with the same viscosity and thick-
ness, an induced repulsion can be correlated with the thick-
ness of the matrix (S/L) as shown by Eq. (3).

If such a system possesses infinite identical competent 
and matrix units, then the problem can be simplified by look-
ing at one unit of the system. The basic unit is composed of 
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A Coefficient of waveform, indicating the magnitude of amplitude

E Elastic Young’s modulus of the competent layer

Eo Elastic Young’s modulus of the matrix

E Elastic Young’s modulus of the layer (plane strain condition); E
v

E
1 2=

-

Eo Elastic Young’s modulus of the matrix (plane strain condition); E
v

E
1 o

o
o 2=

-

f Compressive stress in x-direction applied on layer

fi Lateral compressive stress in x-direction applied on the i-th layer

h Thickness of the competent layer

hi Thickness of the i-th competent layer

I Inertial moment of the layer

Ii Inertial moment of the i-th layer

L Fold wavelength

Ld, s Dominant wavelength of the single-layer fold

Ld, m Dominant wavelength of the multi-layer fold

l Normalized wavelength (L/h)

ld, s Normalized dominant wavelength of single-layer fold (Ld, s/h)

ld, m Normalized dominant wavelength of multi-layer fold with a constant thickness h (= Ld, m/h)

q Matrix repulsion on surface of competent layer, load applied by the matrix in y-direction

qo, s Matrix repulsion (load) applied by the matrix in a single-layer system

qo, m Matrix repulsion (load) applied by the matrix in a multi-layer system

qi Shared load applied by the matrix to the i-th layer in y-direction

R Competence contrast

Rv Viscous competence contrast ( Rv oh h= )

S Thickness of matrix

s Normalized thickness of matrix (S/h)

T Time elapsed from the beginning of lateral shortening until the initiation of buckling

t Time

Q Matrix repulsion at the competent layer-matrix contact zone

Y(x,t) Waveform function of the fold

y Distance in y-direction

fo Strain rate

xf Strain in x-direction; lateral strain

xfo Strain rate in x-direction

x
Bf Strain xf  at which buckling is initiated

h Viscosity of the competent layer

oh Viscosity of the matrix

lh Viscosity of the i-th competent layer

m Frequency of the waveform; = 2 Lr

,y sv Normal stress in y-direction applied on matrix in a single-layer system

,y mv Normal stress in y-direction applied on matrix in a multi-layer system

Table 1. Nomenclature.
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Fig. 2. Stress distribution ( ,y sv ) within matrix, caused by folding of a single competent layer embedded in infinite matrix. The subscript s denotes 
“single-layer system.” Note the coincidence between the analytical solution and the numerical simulation. h  = 2 × 1020 Pa·s, oh  = 2 × 1017 Pa·s, 
contrast ratio Rv = 1000.

Fig. 3. Results of numerical simulation vs. analytical solution to demonstrate the influence of the matrix thickness vs. the matrix repulsion situated 
on the layer/matrix contact zone.

(a) (b)

Fig. 4. The distribution of the normalized stress field by means of stress superposition in the matrix from several single-layer systems to comprise a 
multi-layer system with different matrix thicknesses (S/L). The examples of S/L range from 2.0 - 1.0 (a) and 1.0 - 0.4 (b).
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one competent layer and two half-thicknesses of the matrix 
(total matrix thickness being S) situated on both sides of the 
competent layer, as illustrated in Fig. 5. The entire pile of 
the multi-layer fold may be considered as a permutation and 
combination of the units. The deformation of each unit during 
the folding process is identical due to kinematic similarity.

The surface repulsion for an individual competent lay-
er (qo, m) can be obtained by combining Eqs. (3) and (1) as 
follows:

q t
Y

L
S e4 1 2 1,o m L

S
0

2

2
2h m r= - - + r-` j8 B (4)

Similar to the process used by Biot (1961) and Jeng and 
Huang (2008), the relationship of qo, m with the lateral thrust 
(f, illustrated in Fig. 5) at the impending buckling can be 
established as

q f h
x
Y h

t x
Y

3
1

,o m 2

2
3

4

5

2
2

2 2
2h= +  (5)

where f is

f 4 xhf= o  (6)

Knowing the basic waveform function of the compe-
tent layer fold to be ( , ) ( )sinY x t A t xx

Bf m=  (Jeng and Huang 
2008) and considering a constant lateral compression strain 
rate, then imposing Eqs. (4) and (6) onto Eq. (5) provides

sin

sin sin

L
S e A x

h A x h A x

4 1 2 1

4 3
1

o L
S

x

x x
B

x

2

2 3 4

$h m r f m

h f m f m h m f m

- - +

= - +

r- o

o o

` j8 B
 (7)

after simplification,

L
S e h h4 1 2 1 4 3

1
o L

S
x
B2 3 3h r h mf h m- - + = - +r-` j8 B  (8)

by reforming the equation, we obtain

2h h L
S e12

1 1 1 2
x
B L

S
2 2 0f m

h m
h

r= + - + r-` j8 B (9)

where x
Bf  is the lateral accumulative compressive strain of 

the layer-matrix unit. With the application of the frequency 
L2m r=  to Eq. (9), the theoretical solution of the viscous 

multi-layer fold is thus obtained as follows:

2
L

h
h
L

L
S e3

1
2 1 1 2

x
B L

S

2

2 2
0f r
h r
h

r= + - + r-` j8 B (10)

We can then further normalize the wavelength with the 
thickness of the competent layer h. Normalized wavelength 
l = L/h and normalized matrix thickness s = S/h, are obtained 
as such, therefore s/l = S/L. Equation (10) then becomes

2
l

l
l
s e3

1
2 1 1 2

x
B l

s

2

2
0f r
hr
h

r= + - + r-` j8 B (11)

The normalized dominant wavelength (ld, m) can be obtained 
by taking l 0x

B2 2f = , leading to

2 6 2 21l l
s

l
s e1,

3

, ,

2
/

d m
o d m d m

l
s2 1 3

,d mr
h
h

r r= +- + r-c m; E' 1  (12)

where l2 6 ,o d s
3r h h =  is the dominant wavelength in a 

single-layer fold system (Biot 1961).
Finally, Eq. (12) can be reformed as

2l
l

l
s

l
s e1 1 2

,

,

, ,

2
/

d s

d m

d m d m
l
s2 1 3

,d mr r= - + + r-
-

c m; E' 1  (13)

3.2 Folding Behavior Revealed by the Solution

(1)  As there is no time factor involved in Eqs. (10) - (13), 

Fig. 5. Schematic diagram shows the regular pile of multi-layered folds; the system may simplified by one rock unit.
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the purely viscous multi-layer folding is thus time inde-
pendent just as the purely viscous single-layer folding.

(2)  As revealed by Eq. (12), the dominant wavelength of a 
multi-layer system (ld, m) fold is related to either S/L or s/l 
in addition to the contrast ratio (Rv oh h= ).

(3)  Using the viscosity contrast ratio Rv = 1000 as an ex-
ample, Fig. 6 illustrates the curves of the folding behav-
ior according to different S/L values. It can be seen that 
when S/L = 1, the multi-layer folding behavior performs 
almost the same as a single-layer fold. By decreasing the 
matrix thickness (S), the required folding strain decreas-

es and the dominant wavelength enlarges. Finally, when 
S/L = 0.1 the multi-layer folding behavior of approaches 
that of a matrix-free folding material.

(4)  In Fig. 7, the results from the numerical simulation agree 
well with the theoretical solution, as shown in Fig. 7. 
However, some minor discordance could be detected 
under the condition of small matrix thicknesses (S/L). 
Such discrepancy is possibly result from the fact that 
a numerical model can only construct a finite length, 
whereas a simulated layer can have infinite length.

(5)  Figure 7 further demonstrates the relationship of  

Fig. 6. The result of the example Rv = 1000 by Eq. (10) which shows the influence of matrix thickness (S/L). The uppermost curve is the waveform 
curve of a single-layer system with infinite matrix and the lowest is the waveform curve of a single-layer system with no matrix around itself. When 
S/L = 1, the waveform curve of a multi-layer system is close to a single-layer system. When S/L is rather small, say 0.1, the multi-layer system fold-
ing is close to a “no matrix” folding situation.

Fig. 7. The influence of matrix thickness on the resulting dominant wavelength. The prediction of the analytical solution [Eq. (13)] compares well 
with the results of 2D FEM simulation. A simplified curve is also proposed by Eq. (14). The subscripts d, m, and s denote “dominant wavelength”, 
“multi-layer system”, and “single-layer system”, respectively. It shows that closer competent layers lead to greater dominant wavelengths.
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ld, m/ld, s vs. s/ld, m by means of Eq. (13), in which the in-
fluence of Rv vanishes. In the condition of s/ld, m > 0.4, 
the values of ld, m/ld, s are all close to one. In other words, 
when the matrix thickness against the wavelength ex-
ceeds 0.4, the wavelength of the multi-layer fold is ac-
tually similar to the single-layer dominant wavelength; 
within the condition of gradually diminishing of matrix 
thicknesses (s/ld, m < 0.4), the wavelength of the multi-
layer fold increases rapidly.

(6)  If the competent layers have the same thickness and 
spacing, then the dominant wavelength of the multi-
layer fold (ld, m) is directly correlated with the contrast 
of viscosity between the competent layer and the matrix 
[Eqs. (12) and (13)]. Equation (13) may be simply re-
gressed from Fig. 7 as

. .l l s l0 8 0 16, , ,
.

d m d s d m
0 85= + -^ h  (14)

This regression function is suitable for use under the 
condition of s/ld, m < 1.0, as indicated by Fig. 7. If the wave-
length measured in this field is close to Ld, m and together 
with the measured S and h (for the uniform thickness multi-
layer system), then ld, s can be more easily accessed using 
Eq. (14) and ( )Rv oh h=  can then be inferred.

4. FOLDING BEHAVIOR OF LAYERS WITH  
DIFFERENT PROPERTIES

4.1 Multi-Layer System with Different Viscosities

Consider the multi-layer system shown in Fig. 8, where 
the viscosity of the i-th competent layer is ih  and all of the 
layers have same thickness of h, adjacent with a thin matrix 
between the layers. Recall from Eq. (3) and Fig. 3 that the 
repulsion of the matrix rapidly decreases with its thickness 
and eventually vanishes to zero with a matrix thickness of 
zero. We therefore set the matrix thickness to be very thin 
(close to zero) so that there is no extra repulsion inside the 
grouped layers and repulsion only exists on the two outer-

most surfaces of the grouped layer.
All of the strata equally deform with a constant lateral 

strain rate xfo  so that the compressive stress in the i-th layer 
fold should be f 4i i xh f= o  and the matrix repulsion distrib-
uted for the i-th layer is qi. The governing equation in the i 
layer is obtained as

q f h
x
Y h

t x
Y

3
1

i i i2

2
3

4

5

2
2

2 2
2h= +  (15)

The total repulsion can be obtained by summing the qi  
values:

q q f h
x
Y h

t x
Y

3
1

i
i

n

i
i

n

i
i

n

1
0 2

2

1

3
4

5

12
2

2 2
2h= = +

= = =
/ / /  (16)

The viscous matrix repulsion, located on the two 
outermost surfaces of the group layer, is q t

Y40 0 2
2h m= -

. Substituting the basic waveform function of fold 
( , ) ( )sinY x t A t xx

Bf m=  and supposing that the deformation 
of the strata is compressed under a constant lateral strain 
rate, we then have

4 sin

sin sin

A x

h A x h A x4 3
1

o x

i x x
B

i

n

i x
i

n
2

1

3 4

1

h m f m

h f m f m h m f m

-

= - +
= =

o

o o/ /  (17)

Reformatting and simplifying the equation gives us

h h4 4 3
1

o i x
B

i

n

i
i

n
2

1

3 3

1
h m h m f h m- = - +

= =
/ /  (18)

Subsequently,

h h h122 3

1
.x

B
i

i

n

i
i

n

i
i

n

1 1
f m h h h h m= +

= = =
/ / /  (19)

Fig. 8. Schematic diagram illustrates the analyzed model: competent layers with the same thickness, but with different viscosities closely spaced.
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In applying L2m r=  to Eq. (19), the theoretical solu-
tion of an assemblage of this type of geometry and physical 
property multi-layer strata should be

L
h L h3 2x

B
o i

i

n2 2

1
f r h r h= +

=
/  (20)

Applying the normalized wavelength l = L/h into Eq. (20), 
the theoretical solution is obtained as

l
l3

1 2x
B

o i
i

n

2

2

1
f r h r h= +

=
/  (21)

As such, the folding behavior of multi-layer system is re-
lated to the matrix viscosity oh  and the summation of the 
layer viscosity i

i

n

1
h

=
/  as indicated by Eq. (21).

In the condition of L2m r= , the normalized domi-
nant wavelength of the multi-layer strata ld, m is

l 2 6,d m i
i

n

o
1

3r h h=
=
/  (22)

Considering the entire set of multi-layer folding strata as 
a single-layer (group layer) fold, the higher the value of 
equivalent viscosity ( i

i

n

1
h

=
/ ), the higher the equivalent resis-

tance ratio ( i
i

n

1
0h h

=
/ ) will be for the system.

Based on Eqs. (21) and (22), it is thus shown that for 
a pile of strata with different ih  values, the folding behav-
ior is not affected by the strain rate and again remains time 
independent.

As derived from Eq. (21), with the increment of total 
viscosity of the strata pile ( i

i

n

1
h

=
/ ), the strain ( x

Bf ) required 

to initiate the buckle fold decreases. Similarly, as hinted in 
Eq. (22), the normalized dominant wavelength (ld, m) then 
increases.

4.1.1 Folding Behavior Analysis

To explore the effect of total viscosity on a multi-layer 
fold, the model is evaluated by three different sets of vis-
cosities in the competent layers. Each set is composed of 
five layers with a constant thickness and an identical matrix 
viscosity oh  = 1 × 1017 Pa·s. Three sets of viscosities are 
listed as follows:
Fold 1:  h  = 4 × 1018, h  = 8 × 1018, h  = 1.6 × 1019, h  = 8 × 

1018, h  = 4 × 1018 (Pa·s)
Fold 2:  h  = 1 × 1019, h  = 2 × 1019, h  = 4 × 1019, h  = 2 × 1019, 

h  = 1 × 1019 (Pa·s)
Fold 3:  h  = 4 × 1019, h  = 8 × 1019, h  = 1.6 × 1020, h  = 8 × 

1019 8 1019#h = , h  = 4 × 1019 (Pa·s)
The equivalent total viscosity of these three sets there-

fore are 4 × 1019, 1 × 1020, and 4 × 1020 (Pa·s), respectively. 
Figure 9 illustrates three different folding curves obtained 
from these three different sets of viscosity according to  
Eq. (22).

If the viscosity of each competent layer is identical, 
then Eq. (22) converges into l n2 6,d m 0

3r h h= , where n is 
the number of layers. This result is identical to the analytical 
theory of multi-layer folds as proposed by Biot (1965).

4.2 Multi-Layer System with Different Thicknesses

Due to environmental perturbation and variation, it is 
unnecessary for all competent layers to form with identi-
cal thicknesses. Thus, a pile of strata with different thick-
nesses will appear. In a single-layer fold, the wavelength 

Fig. 9. Waveform curves yielded from models with different sets of viscosities. The analytical predictions compare well with 2D FEM simulation 
by checking the dominant wavelengths.
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proportionally increases with the increment of the thickness 
of competent layer. After normalizing the wavelength with 
the layer thickness, it has been shown that the normalized 
wavelength only relates to the contrast ratio of strata; the ef-
fect of the layer thickness vanishes (Jeng and Huang 2008). 
However, the thickness of each individual layer may differ 
in a multi-layer fold. The effect of varying thicknesses as-
sociated with multi-layer folding must be taken into con-
sideration. This section targets only at the evaluation of the 
thickness factors of the competent layers. The competent 
and matrix layers with identical viscosities and thin matri-
ces are presumed on this premise.

The analyzed model is shown in Fig. 10, with the thick-
ness of the i-th layer assigned as hi therein, and its associ-
ated inertia moment therefore be I h 12i i

3= . The strata are 
laterally deformed with an identical lateral strain rate such 
that all strata receive the same accumulated lateral compres-
sive strain.

The resulting governing equation then takes the form 
of:

q q fh
x
Y h

t x
Y

3
1

i
i

n

i
i

n

i
i

n

1
0 2

2

1

3
4

5

12
2

2 2
2h= = +

= = =
/ / /  (23)

The viscous matrix repulsion is q t
Y40 0 2
2h m= - . Assuming 

deformation of the strata is compressed in a constant lateral 
strain rate with the lateral compression force of 4f xhf= o  and 
substituting the basic waveform ( , ) ( )sinY x t A t xx

Bf m= , we 
then have

4 sin

sin sin

A x

h A x h A x4 3
1

o x

i x x
B

i

n

i x
i

n
2

1

3 4

1

h m f m

h f m f m h m f m

-

= - +
= =

o

o o/ /  (24)

This can be reorganized and simplified to

h h4 4 3
1

o i x
B

i

n

i
i

n

1

3 3

1
h m h mf h m- = - +

= =
/ /  (25)

Subsequently,

h h h12
3

1
x
B

i
i

n

i
i

n

i
i

n

o

2

1 1
f m h mh= +

= = =
c cm m/ / /  (26)

Applying L2m r=  to Eq. (26), the analytical solution of 
thickness-varying multi-layer strata should be

L
h h L h

3
2x

B
i

i

n

i
i

n

i
i

n

2

2
3

1 1
0

1
f r h h r= +

= = =
c cm m/ / /  (27)

Under the condition of l 0x
B2 2f = , the dominant wave-

length Ld, m is

hL 2 6, i
i

n

d m
3

10

3r
h
h=

=
/  (28)

Because the thickness of all layers is no longer the same, we 
do not have ld, m for this case.

Based on Eq. (27), it has been shown that the folding 
behavior of the thickness-varying viscous multi-layer strata 
is not only affected by the resistance contrast [compared to  
Eqs. (12) and (22)] but is also correlated to the term of hi

i

n
3

1=
/ .

If we choose viscosities of 5 1019#h =  and 
1 10o

17#h =  Pa·s for the competent and matrix layers, re-
spectively (resistance contrast ratio of 500), some effects 
can be discussed below.

4.2.1 The Effect of Layer Thickness

Assume three different sets of strata, with each set 
composed of five beds having the same viscosity and layer 

Fig. 10. Schematic diagram illustrates the analyzed model: competent layers with different thicknesses, but with same viscosity closely spaced.
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thickness. The thickness of each bed is set at 0.5, 1, and  
1.5 m, and the total thickness is set at 2.5, 5, and 7.5 m. Un-
der this situation, the total thicknesses ( hi

i

n

1=
/ ) and the sums 

of the cubic power of thickness ( hi
i

n
3

1=
/ ) of the multi-layer 

folds are different. Figure 11 illustrates the curves of the 
three corresponding fold behaviors, where the wavelength 
increases with total thickness. Based on Eq. (28), a thicker 
stratum creates a greater inertia moment in the buckle multi-
layer strata (related with hi

i

n
3

1=
/ ), and the wavelength of the 

fold is thus longer. The result of the theoretical solution fits 
well with the numerical simulation, as shown in Fig. 11.

In the case of identical bed thicknesses, the wavelength 
can be reformed as L h n2 6,d m 0

3r h h=  (where n is the 
number of competent layers), which again is identical with 

the solution proposed by Biot (1965).

4.2.2 Same Bulk Thickness by Varying Individual Bed 
Thickness

Equation (28) indicates that the wavelength of a har-
monic fold related with hi

i

n
3

1=
/ . In order to evaluate this ef-

fect, three models are thus set in a condition of maintaining 
the same bulk thickness yet with five varied bed thicknesses. 
The three models are as follows: Fold 1: 1, 1, 1, 1, 1; Fold 
2: 0.75, 0.75, 2, 0.75, 0.75; Fold 3: 0.5, 0.5, 3, 0.5, 0.5 (m), 
with an identical bulk thickness of 5 m. The maximum thick-
nesses of the three sets are 1, 2, and 3 m, respectively.

As illustrated in Fig. 12, the result demonstrates that 

Fig. 11. The waveform curves of the models with different total thickness of the competent layers. The analytical predictions compare well with 2D 
FEM simulation by checking the dominant wavelengths.

Fig. 12. The waveform curves of the models with different “maximum thickness” of the competent layers.
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the greater the value of hi
i

n
3

1=
/ , the longer the wavelength and 

the greater the folding-required strain prior to fold initia-
tion. Even though the total thickness is identical, the total 
inertia moment increases with the maximum thickness of 
the individual bed. Furthermore, the strata require more lat-
eral compression x

Bf  in order to generate sufficient strain to 
buckle the strata, as shown in Fig. 12.

In summary, given the same bulk thickness, a thicker 
maximum bed thickness results in a greater inertia moment 
of the strata, and the folding-required lateral compression 
and the wavelength are thus larger. These results have been 
verified with numerical simulation and compare well with 
each other, as indicated in Fig. 12.

4.3 Competent Layers with Different Viscosities and 
Thicknesses

Environmental nature would vary with time resulting 
in the changes of the rock unit in viscosity and thickness. 
This section seeks to develop the theoretical solution in 
general condition with a system, whereby the layers have 
different viscosities and thicknesses with a thin matrix in 
between. Other conditions, including fixed matrix and very 
thin matrix viscosities, are chosen as before.

The respective viscosity and thickness of the i-th lay-
er are ih  and hi, and the resultant inertia moment then is 
I h 12i i

3= . The buckle strata are assumed to have same lat-
eral compressive strain rate, so the lateral compressive stress 
in each layer is 4fi i xh f= o , where the i-th layer shares the ma-
trix repulsion by qi. The governing equation thus becomes

q q f h
x
Y h

t x
Y

3
1

i
i

n

i i
i

n

i i
i

n

1
0 2

2

1

3
4

5

12
2

2 2
2h= = +

= = =
/ / /  (29)

The matrix repulsion is q t
Y40 0 2
2h m= -  with the lateral 

compressive stress of the competent layer 4fi i xh f= o . Sub-
stitute the basic waveform ( , ) ( )sinY x t A t xx

Bf m=  by impos-
ing all of the parameters, we then have

4 sin

sin sin

A x

h A x h A x4 3
1

o x

i i x x
B

i

n

i i x
i

n
2

1

3 4

1

h m f m

h f f m h m f m

-

= - +
= =

o

o o/ /  (30)

After reformation and simplification, then

4 h h4 3
1

o i i x
B

i

n

i i
i

n
2

1

3 3

1
h m h m f h m- = - +

= =
/ /  (31)

and

( ) ( ) ( )h h h12x
B

i i
i

n

i i
i

n

i i
i

n
2 3

1 1
0

1
f m h h h h m= +

= = =
; ;E E/ / /  (32)

Let L2m r=  for Eq. (32); then the analytical solution 
of the varying physical property and different thickness of 
the multi-layer fold system is

( ) ( ) ( )
L

h h L h
3

2
1

x
B

i i
i

n

i i
i

n

i i
i

n

2

2
3

1 1
0f r h h h r h= +

= = =
; ; ;E E E/ / /  (33)

By using L 0x
B2 2f = , the dominant wavelength of the stra-

ta Ld, m is

L h2 6,d m i i
i

n

o
3

1

3r h h=
=
^ h; E/  (34)

Based on this theoretical solution, the folding behavior of 
multi-layer strata is now correlated with the sum of the 
product of the viscosity with the cubic power of the layer 
thickness. Equation (34) serves as the general solution for 
competent layers with different thicknesses and viscosities.

5. APPLICATIONS - SOLUTIONS FOR E-E  
MULTI-LAYER SYSTEM

The governing equation for the folding of an elastic-
matrix elastic-competent multi-layer system can be estab-
lished and solved using processes similar to those previ-
ously mentioned. A model with the following conditions is 
solved as a demonstration:
(1)  Under plane strain conditions, the equivalent elastic 

modulus is E E v1 2= -^ h and E E v10 0 0
2= - .

(2)  The matrix is very thin (S close to zero) and is identical 
for every layer.

(3)  The thickness of each competent layer is identical, h.
(4)  The pile of the strata is composed of a competent bed 

and matrix with an infinite group of layers.
(5)  Using stress superposition, we can determine the repul-

sion in the form of

21q E L
SY e1 2 L

S
0 rm= - +- r-` j8 B (35)

Combining Eq. (35) with the lateral forces, the govern-
ing equation of the elastic fold can be constructed as

q fh
x
Y E

x
Yh12

1
2

2

4

4
3

2
2

2
2= +  (36)

Subsequently,

2E h E E L
Sh e12

1 11 2
x
B L

S
3 3

0f m rm= ++ - r-` j8 B (37)

Reforming the equation by means of strain leaves
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L
h

E h
E L

L
S e

3 2 1 2 1x
B L

S

2

2 2
0 2f r
r

r= + - + r-` j8 B (38)

Let L 0x
B2 2f = ; then the dominant wavelength of multi-

layer fold is

h E
E L L L

S
L

S e2 6 1 1 2 2
, ,

, ,

/

d s d m
d m d m

L
S

3

0

2 2 1 3

,d mr r r= = - + +
r-c m; E' 1  (39)

After reforming Eq. (39), the relation between the sin-
gle-layer and multi-layer fold would be

L
L

L
S

L
S e1 1 2 2

,

,

d s

d m
L

S2 2 1 3r r= - + +
r-

-
` j; E' 1  (40)

This solution has a similar format compared with the case 
of purely viscous multi-layer fold. Likewise, the folding be-
havior is time independent. By changing the parameter set 
( , )oh h  to be ( , )E Eo  in Eqs. (1) - (34), it can be shown that 
elastic and viscous material folds demonstrate similar fold-
ing behaviors.

6. CONCLUSION

(1)  A two-dimensional numerical fold simulation of a multi-
layer system was initially conducted to explore the ac-
tual stress distribution within a matrix. When the matrix 
is thinner than one wavelength, the stress distribution 
within the matrix becomes linear (Fig. 4) and group fold-
ing occurs. However, if the matrix is thicker than one 
wavelength, the folding of the multi-layer system in fact 
is identical to independent folding of each layer alone. In 
other words, group or harmonic fold is most likely to oc-
cur the condition that the matrix is “thin enough”, which 
can be defined as “smaller than one wavelength”.

(2)  By means of stress superposition, this study developed 
theoretical solutions for multi-layer systems in which 
the viscosity and the thickness of the layers were set to 
be identical or different.

(3)  The theoretical solution allows direct study of the effect 
of the matrix thickness S in case of S/L value greater 
than one, the matrix repulsion is similar to a single-layer 
fold system, matching with the concept of one wave-
length zone of contact proposed by Ramsay and Huber 
(1987). In the case of S/L being less than one, the matrix 
repulsion decreases with decreasing spacing (Fig. 3). 
The wavelength of the multi-layer fold thus increases as 
a consequence.

(4)  In the case of competent layers with varying viscosity, 
the folding behavior correlates with the sum of viscosity 

i
i

n

1
h

=
/ , actings as an “equivalent viscosity” of the group 

fold [Eq. (21)]. The higher the equivalent contrast ratio 

[ i
i

n

o
1
h h

=
/ , Eq. (22)], the longer the wavelength (Fig. 9). 

This result is identical with the analytical solution pro-
posed by Biot (1965).

(5)  In the case of competent layers with varying thickness, 
the folding behavior correlates with the sum of the cu-
bic thickness [ hi

i

n
3

1=
/ , Eq. (28)]. The higher the sum, the 

longer the wavelength. If the bulk thickness is identical, 
the folding behavior will be dominated by the thickest 
layer (Fig. 12).
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