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ABSTRACT 

Traveling directions of an inverse ray for the common shot, the com­
mon midpoint and the common offset gathers are explicitly determined from 
the geometry of reflected rays and an envelope of two reflected ellipses in a 

2D homogeneous irregular layer. I find that a common shot gather and a 
common offset gather can be applied to image the structural velocity and 
interface. However, due to the symmetry of the travel-time hyperbola, a 

common midpoint gather is not suitable for structural imaging. 
Furthermore, from a common offset gather, the poststack inverse ray is 
proved as a special case of the prestack inverse ray. 

Error analysis of the prestack inverse ray indicates that the method of 
elliptic envelope provides more accurate imaging at far offsets than the 
method of ray geometry if the travel-time picks are limited along a reflected 

hyperbola. Alternatively, when the travel-time picks are sufficient, the 
method of ray geometry is superior to the method of elliptic envelope. The 
prestack inverse ray is also applied to image a sedimentary basin. The re­

sults suggest that the best way for applying the prestack inverse ray is to 
determine the layer velocity from ray geometry and to image the structural 
interfaces by considering both methods. 

(Key words: Common offset, Common shot, Complex structure, Image source, 
Prestack depth migration, Reflected ellipse, Travel time) 

1. INTRODUCTION 

Prestack depth migration has been widely applied for the multi-channel seismic (MCS) 
data processing of the steep dips and faulted structures (Gray et al. 2001 ) . Although the com­
puting speed of the prestack depth migration has been enhanced by the ray-based migration 
(Operto et al. 2000; Hill 2001), its applications on the migration velocity analysis and the real­
time monitoring are still limited (Donihoo et al. 2001 ). On the other hand, by using the posts tack 
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data, the geometrical migration of reflected signals or the inverse-ray method (May and Covey 

1 981) has provided an efficient way to image the crustal interfaces (Warner 1 987; Raynaud 
1 988). The key point of the inverse-ray method is to determine a take-off angle of an inverse 
ray from the zero-offset travel-times. Recently, inverse rays were applied to enhance the capa­
bility of the poststack depth migration (Hua and McMechan 2001). Furthermore, the math­

ematical derivation and the physical meaning of the zero-offset inverse rays in 2D multi­
layered structures were proposed (Wang and Tan 2002). 

Until now, few studies have been conducted on the inverse ray for the case of the non-zero 
offset although the reflected signals in the MCS data can be fully used for prestack imaging of 
complex structures. By considering envelopes of reflected ellipsoids from the common shot 
gathers, Pivot (1997) first proposed a 3D prestackgeometrical migration to image a 3D homo­
geneous layer. However, the main drawback of his prestack geometrical migration was the 
inefficiency of computing the reflected ellipsoids. The aims of this paper are to present a 
tutorial study of the prestack inverse-ray method and to image the complex structures effi­
ciently from the reflected travel-times of the MCS data. 

2. THEORY 

A reflected point at an interface is imaged through an inverse ray if directions of the 
reflected ray emitting from a source (S) and a receiver (R) can be determined. In the following, 
the ray geometry and the reflected envelopes of a common shot gather, a common midpoint 
gather and a common offset gather are investigated for determining the directions of an in­
verse ray. For simplicity, I present the prestack inverse-ray imaging of a 2D homogeneous 

irregular layer with a constant velocity of V. The sources and the receivers in a MCS survey 

are also assumed at a flat surface (z = 0). 

2.1 Ray Geometry 

A virtual source (S') and a virtual receiver (R'), reflected images of a source and a re­

ceiver to an interface with a dip of a, are applied to elaborate the geometry of the non-zero 
offset rays (Fig. 1). For determining the direction of an inverse ray, I project the virtual source 
and the virtual receiver onto the flat surface as denoted by S" and R" in Fig. 1, respectively. 
Thus, by considering the right triangles RS'S" and SS'S'' in three types of the source-receiver 

gathers, the direction of an inverse ray emitting from the receiver can be written as 

cos(LR) = 
RS+ SS'sina 

sin(LR) =SS cos a . 
RS' 

' 
RS' 

(1) 

Similarly, by investigating the right triangles SR'R" and RR'R", the direction of an inverse 
ray shooting from the source is 

cos(LS) = 
SR- RR' sin a sin(LS) = RR' cos a 

SR' 
' 

SR' 
(2) 
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Fig. I. Reflected rays of (a) a common shot gather, (b) a common midpoint 
gather, and (c) a common offset gather travel in a homogeneous layer 
with a dip angle of a. A virtual source (S') and a virtual receiver (R') are 
located as the reflected images of a source (S) and a receiver (R) to the 
dipping interface, respectively. The projection of the virtual source and 
receiver onto the surface are denoted by S" and R", respectively. 
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Therefore, in terms of the ray direction, the reflected point with respect to the source point can 
be derived, 

A = 
cot(LS) SR A = 

SR 
x cot( LS)- cot( LR) ' z cot( LS) -cot( LR) (3) 

To employ the ray geometry of different source-receiver gathers and to substitute (1) and (2) 
into (3), I determine the reflected points explicitly as follows. 

2.1.1 A common shot gather 

Let the offset (SR) in a common shot gather be denoted by x and the distance from the 
source to the interface be h (Fig. la). The offset for the station (S") located above the virtual 
source and that receiving a vertical shooting ray are 

xms=-2hsina and xns=2hsinalcos2a, (4) 

respectively. By applying (1) to the case of a common shot gather, the direction of an inverse 
ray emitting from the receiver is determined, 

x -x cos( LR) = -"'m=-s -
Vtx ' 

sin(LR) = 2hcosa 
Vtx (5) 

Similarly, from (2) and RR' = 2(h + xsina) in Fig. la, the direction of an inverse ray shoot­
ing from the source is obtained, 

x- x cos(LS) = cos2a ns 

Vtx ' 
. ( /S) 2 . h + x sin a sm L = sma----

V tx (6) 

Equations (5) and (6) indicate that an inverse ray of a common shot gather emits from the 
receiver with a negative x component of the direction when x > x and it shoots from the ms 
source with a negative direction cosine when x < xns (the case of Fig. la). Finally, to substitute 
(5) and (6) into (3), the reflected point is derived in a closed form, 

x - x  A = hcos2a ns 
x 2h+ xsina' 

A 2h h+xsina 
z = cos a-----

2h + xsina · 
(7) 

Equation (7) is independent of V while h and a in (7) can be determined from fitting the 
travel-time hyperbola (A3) through the least travel-time error, as indicated in Appendix A. 

2.1.2 A common midpoint gather 

Let the offset (SR) in a common midpoint gather be denoted by x and the distance from 
the midpoint (Min Fig. lb) to the interface be h. By considering the geometry of the ray 
shooting (or receiving as the solid arrow) vertically from M1 to D and receiving (or shooting as 
the solid arrow) at M2 in Fig. lb, the offset between M1 and M2 is 

xmm = 2hsina/(cosa)2' (8) 
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where M1D = (h -xmm sina/2)seca and xmm = MIDtan2a are considered. According to 

(1) and SS'= 2(h -xsina /2) in Fig. lb, the direction of an inverse ray from the receiver of 
a common midpoint gather is determined, 

x+ x 2 cos(LR) = mm (cosa) 
Vtx ' 

. (LR) 2h -xsina sm = cos a 
Vtx (9) 

Similarly, in view of (2) and RR'= 2(h + xsina/2) in Fig. lb, the direction of an inverse 

ray from the source is obtained, 

x -x cos(LS) = mm (cosa)2 
Vtx ' . (LS) 

2h + xsina Mn = cos a 
V tx (10) 

Equations (9) and (10) indicate that an inverse ray of a common midpoint gather emits from 
the receiver with a negative x component of the direction when x > -x , and it shoots from the mm 
source with a positive direction cosine when x > xmm (the case of Fig. lb). Finally, substituting 
(9) and (10) into (3), the reflected point with respect to the common midpoint is derived in a 
closed form, 

A h . (i (xcosa)2) X=- sma + ---
2h , A h (1 (

xsina)2) , = cosa -" 2h . (11) 

Unfortunately, since the travel-time hyperbola of a common midpoint gather 

t; = (2h I V)2 + (x cos a I v)2 is symmetrical with respect to X, parameters hand a in (11) 

can be determined from fitting the travel-time hyperbola only if V is known in advance. 
Furthermore, the square of cos a in the travel-time hyperbola results in the uncertain sign of 
sin a in (11) for structural imaging. 

2.1.3 A common offset gather 

Let the offset ( SR) in a common offset gather be denoted by x* and the source location, 
the distance from the intersection of the interface and the surface (T) to the source, be x, as 
shown in Fig. le. I observe that the source locations for two special cases of shooting (x*> 
0) and receiving (x*<O) a vertical ray (Fig. 2) are 

cos2a * x* 
x - x d x -

no 
- 2(sina)2 an 

mo 
- -

2(sina)2' (12) 

respectively. By considering (1) and SS'= 2xsina in Fig. le, the direction of an inverse ray 
from the receiver of a common offset gather is determined, 

cos(LR) = 2(sina)2 xmo -x 
sin(LR) = xsin2a 

Vtx ' V fx (13) 

Similarly, from (2) and RR'= 2(x + x *)sina in Fig. le, the direction of an inverse ray from 
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Fig. 2. Two special cases of shooting (x*>O) and receiving (x*<O) a vertical ray 
in a common offset gather. The length labels of x and x* are for the no 

former case while the solid arrows and those of x and -x· are for the mo 
latter case. 

the source is obtained, 

cos(LS) = 2(sina)2 xno + x 
Vtx ' 

sin(LS) = (x + x*)sin2a 
Vtx (14) 

Equations (13) and (14) indicate that an inverse ray of a commpn offset gather emits from the 
receiver with a negative x component of the direction when x > xmo and it shoots from the 
source with a positive direction cosine when x < x,'° (the case of Fig. le). Finally, substituting 
(13) and (14) into (3), the reflected point with respect to the intersection of the inteiface and 
the suiface (T) is derived in a closed form, 

A _ Z( )2 x(x + x · ) 
x - cosa • , 

2x+ x 
A . 2 x(x+x*) 

z = Slll a * 
2x+ x 

(15) 
The dip of the interface a in (15) can be determined from fitting the travel-time hyperbola of 
a common offset gather through the least travel-time error, as similar to Appendix A. Equation 
(15) also indicates that the slope of the reflected point A/A,, equals the slope of the interface 
that supports the accuracy of the prestack inverse-ray imaging. Furthermore, the poststack 
inverse-ray imaging (May and Covey 1981) can be derived from (13)-(15) for the case of the 
zero offset (x*=O). 

2.2 Elliptic Envelope 

Let the distance between a source and a receiver be 2c. A reflected point A with the travel-
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time t should be located at an ellipse with the foci at x == ± c, and its semi-major and semi­
minor axes should be a== Vt/2 and b = -'1 a2 - c2 , respectively (Fig. 3). If the layer velocity 
(V) is known, an envelope of two reflected ellipses in three types of source-receiver gather is 
investigated for determining the reflected points (a cos e, b sin 8) or the angle e. 

2.2.1 A common shot gather 

Let x1 and x2 be the half offsets of two receivers in a common shot acquisition (Fig. 4a). 
Since two reflected points at two reflected ellipses of a common shot gather are 

A1 = (x1 + a1 cosel' b1 sin81) and Ai= (x2 + a2 cos82, b2 sin82 ), (16) 

their parallel tangents (B2) at the elliptic envelope imply that 

a a 
_J_ tan e = -1. tan e b l b 2 

I 2 
--) 

(17) 

Similarly, since the slope of the vector A1Ai is equal to the slope of dA/d 8(B2), I obtain 

h2 sin82 - bl sin el b. 
e -----=------=----'--�-- = -___..!...cot . 

X2 - X1 + a2 COS82 - a1 COS81 a1 ' 

Substituting (18) into (17) leads to 

__5_ - __5_ = X2 -Xi cosel cose2 

;; = a+ccos8 
y 

----- ____ A(acose, bsin8) 
__,.,.,.....�""-1J,lr- - -- - , ' ' ' ' 

/2 =a - ccosO 

-a � - c ' ' ' ' 

_, 

c; 

! , ' , 

' ' ' 

' ' ' ' 

a 

c2 =a' -b2 

x 

Fig. 3. Properties of a reflected ellipse. A reflected point and its tangent are 
displayed as A and a thick line, respectively. 

(18) 

(19) 
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Fig. 4. An envelope of two reflected ellipses in (a) a common shot gather, (b) a 
common midpoint gather, and (c) a common offset gather. A thick line 

A;A; in (b) is another elliptic envelope in the common midpoint gather. 

Therefore, the angle e. can be determined from (17) and (19), ' 

8 bi2(Xz -X1)+b12X2 -b;xl sec ; = 
aJb12 -bi) , i=l,2 , (20) 

where two roots from ±�b;bi(x2 -x1)2 +(b;-b;) (b;a;-a�bi) in (20) has been se-
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lected as b; x2 - hi Xi since hi xi -b12 x2 will result in the contrary result lsec 8; I = c/a; < 1. 

Reflected points and directions of two inverse rays can be derived from substitution of (20) in 
(16) and (B5)-(B6), respectively. 

2.2.2 A common midpoint gather 

Since two reflected points at two reflected ellipses of a common midpoint gather (Fig. 4b) 
are 

A; =(a; cos8;, h; sin8), 
( 17) can be applied but ( 19) is rewritten as 

To consider (17) and (22), I find 

b2 2 2b2 
2u i a2-a1 2 sec o. = ��-�� ' 

a
1(b2 -b2) , i=l,2 . 
i 1 2 

Therefore, two reflected points are obtained by substituting (23) into (21), 

( 
b2 b2 2 2 

J A = + z i - z b2 a1 - a1 . 
; -a; b2 2 _ 2b2' 1 b2 2 _ 2b2 , z=l,2. 

1 az a1 2 1 a2 a 1 2 

(21) 

(22) 

(23) 

(24) 

The effect of the double root in the x component of the reflected points (24) can also be seen as 

A1Az and A(� in Fig. 4b, which is similar to the uncertain sign of sin a in the method of ray 

geometry. 

2.2.3 A common offset gather 

Let the shot interval or the receiver interval of a common offset gather (c=c1=c2) be /j,)(, 
then two reflected points at two reflected ellipses are 

A1 = (a1 cos BP b1 sin81), Az = (M + a2 cos82, h2 sin82). (25) 

Equation ( 17) is still applied but ( 19) is rewritten as 

___s_ - ___!!1._ = /j,)( 
cosel cos82 

To consider (17) and (26), I find 

b.2 M + I b2 b2 /j,)(2 + c2 (b2 _ b2 )z 
C8 1 'IJ I 2 I 2 se ; = 

(b2 b2) , i=l,2 . 
a; I - 2 

(26) 

(27) 

The plus sign of the square root is selected in (27) since the absolute value of this result is 
larger than that with the minus sign. Furthermore, for the case of the zero offset (c=O, a;=b), 
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(27) can be reduced to 
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M 
secel = sece2 = ---

bl -b2 ' 
which is equivalent to the take-off angle for propagation of the poststack inverse rays. 

(28) 

Analysis of the ray geometry and the elliptic envelope indicates that, due to the symmetry 
of the travel-time hyperbola and the double root of the reflected points, a common midpoint 
gather is not suitable for determining the structural velocity and interface. On the other hand, 
a common shot gather and a common offset gather can be applied to image the layer velocity 
and the structural interface. In particular, from a common offset gather, the poststack inverse 
ray is proved as a special case of the pres tack inverse ray. 

3. RESULTS AND DISCUSSIONS 

Reflected rays traveling in 2D sedimentary structures with a P-wave velocity of 3 km/s 
and the associated travel times are first calculated by using the stable-beam method (Wang and 
Waltham 1995). The ray geometry (equation (7)) and the elliptic envelope (equations (16) and 
(20)) of the common shot gathers are subsequently applied to evaluate the errors of inverse 
rays and to image a sedimentary basin. 

3.1 Error Analysis 

A flat interface with a depth of 500 m is used to test the accuracy of the prestack inverse 
rays subject to the limited number and the uncertainty of travel-time picks. By applying the 
minimum number (three) of travel-time picks with an uncertainty of 20 ms to the ray geometry, 
inverse rays of a common shot gather (the inset of Fig. 5) are constructed. The travel-time 
uncertainty is chosen because the wavelet length is designed about 20 ms in most of the MCS 
surveys. The depth errors of reflected points from the ray geometry, indicated by the circles in 
Fig. 5, are much greater and more unstable at far offsets (offsets> 1100 m) than those at near 
offsets. On the other hand, the depth errors of the prestack inverse-ray imaging based on the 
elliptic envelope, indicated by the triangles in Fig. 5, are slightly increasing from 30 m at the 
zero offset to about 70 m at the offset of 2000 m. The large error of ray geometry at far offsets 
result from the insufficient travel-time picks for determining the layer velocity and for ex­
trapolating the shortest travel-time and offset pairs of the reflected hyperbola according to 
Appendix A. Therefore, when the travel-time picks of a reflected hyperbola is limited as the 
extreme case in Fig. 5, the method of ray geometry is recommended for applying at near 
offsets where the results from both methods are similar. Alternatively, the method of elliptic 
envelope is suitable for imaging at far offsets where the results from both methods show great 
differences. 

Prestack inverse-ray imaging over interfaces with dips of 30°, 45° and 60° (insets of Fig. 
6) are investigated for testing the imaging errors subject to the dips of the interfaces and the 
uncertainty of the travel-time picks. The depth errors of three dip models (Fig. 6) show that the 
increasing dips of the interfaces increase the errors of both methods. Furthermore, the method 
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409 

2000 

of elliptic envelope (triangular symbols) is unstable at far offsets and for imaging shallow 
interfaces. The instability from the method of elliptic envelope may be attributed to the influ­
ence of the travel-time uncertainty at the denominator in (20). Therefore, the method of ray 
geometry is, in general, superior to the method of elliptic envelope when the travel-time picks 
are sufficient. 

3.2 Imaging of a Sedimentary Basin 

Prestack inverse-ray imaging is applied on a sandbox model of a strike-slip fault and pull­
apart basin (Wang and McClay 1995). For constructing a 20 homogeneous layer from the 
inverse rays, I select the top layer of the sandbox model and a longitudinal section through the 
center of the model. The reflected travel-times from six shots with a shot spacing of 2 km and 
25 receivers with a receiver interval of 0.15 km for each shot are computed by using the stable­
beam method (Fig. 7). The acquisition in this seismic simulation is sparse, compared to that 
required in the conventional MCS survey, in order to test the capability of the prestack in­
verse-ray imaging. I observe that first arrivals in travel-time curves of the second and fifth 
shots are limited (Fig. 7), which implies the arrival terminations due to the structural kinks. 
Furthermore, picks of the later arrivals in the first two shots are difficult because lots of them 
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Fig. 6. Errors of the prestack inverse-ray imaging over interfaces with dips of (a) 
30°, (b) 45° and (c) 60°. The circles and the triangles denote the errors 
subject to a travel-time uncertainty of 20 ms by using the methods of ray 
geometry and elliptic envelope, respectively. Inverse rays traveling in 
three dip interfaces by using the method of elliptic envelope are shown 
in the insets. 

are close to each other. In particular, arrivals later than 5 s in the third shot gather may not be 
seen in the real data. 

For the prestack inverse-ray imaging, each travel-time hyperbola must be picked sepa­
rately (e.g. the first arrivals in the last shot) since the layer velocity (V), the distance from a 
source to an interface (h) and the dip of the interface (a) are evaluated from each travel-time 
hyperbola according to Appendix A. The results of the prestack inverse-ray imaging show that 
the first arrivals only constrain the shallow interface as shown by inverse rays as dark lines and 
reflected points as dark dots in Fig. 8. The interface imaged by ray geometry (dark dots) and 
that constructed from elliptic envelope (dark lines) are similar except when rays emit from the 
second and fifth shots. The differences can be attributed to large errors of V, h and a from the 
method of ray geometry when arrivals at a travel-time hyperbola are limited. Imaging by the 
later arrivals (gray lines and cross symbols in Fig. 8), especially from the first two shots, fill up 
the deep interface and other portions that lack constraints from the first arrivals. The method of 
ray geometry still generates the errors due to few arrivals at the travel-time hyperbola in the 
first, second, fifth and sixth shots. 

The imaging error of a sedimentary basin when using the elliptic envelope (Fig. 8) is 
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Fig. 7. Reflected travel-times in six common shot gathers of a sedimentary basin. 

Travel-time picks as dark and gray dots are, respectively, the first and 

later arrivals used for prestack inverse-ray imaging of the basin. 

small compared to those in the flat and dip layers (Figs. 5 and 6) because the depth of the basin 

is greater than the extreme cases in the error analysis. Hence, the prestack inverse-ray imaging 
is better when applied to the deep seismic survey. Applications of the prestack inverse-ray 

imaging also suggest that the layer velocity can be determined from ray geometry (Appendix 

A), while the method of elliptic envelope requires the layer velocity in advance. Furthermore, 
the method of ray geometry is more accurate than the method of elliptic envelope (Fig. 6), 
except when the travel-time hyperbola possesses limited arrivals (Figs. 5 and 8). For the latter 
case, the method of elliptic envelope is recommended at far offsets where the results from both 

methods show great differences. Therefore, velocity determination from ray geometry and 
interface imaging by considering both methods will be the practical way for prestack inverse­
ray imaging. 

Similar to the applications of common shot gathers presented in this section, prestack 

inverse-ray imaging can be readily applied to common offset gathers. Furthermore, since the 
arrival terminations seen in the above example imply the structural kinks, prestack inverse-ray 

imaging with diffracted arrivals is possible by considering the intersection of diffracted ellipses. 

For the case of 30 multi-layers, the envelopes of reflected ellipsoids (Pivot 1997) and the 
intersection of diffracted ellipsoids can be considered to image each layer at a time by using 
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Fig. 8. Prestack inverse-ray imaging of a sedimentary basin. Reflected rays as 
dark and gray lines are derived from the method of elliptic envelope with 
the first and later arrivals, respectively. Reflected points as solid circles 
and cross symbols are obtained from the method of ray geometry with 
the first and later arrivals, respectively. Solid lines at the bottom are the 
true interface. 
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travel-time picks from all layers (Wang and Tan 2002). However, the prestack inverse-ray 
imaging of inhomogeneous media is still one of the unsolved issues that need to be further 
investigated. 

4. CONCLUSIONS 

By considering the geometry of reflected rays from image sources and image receivers in 
a common shot gather, a common midpoint gather and a common offset gather, I determine 
the layer velocity and two directions of an inverse ray (one emitting from a source and another 
receiving by a station) traveling in a 2D homogeneous layer. An envelope of reflected points 
with a constant travel-time in three types of source-receiver gathers is also investigated for 
prestack inverse-ray imaging of a 2D homogeneous irregular layer. Although the structural 
velocity, dip and depth can be derived purely from fitting of the travel-time hyperbola, the 
inverse rays provide full coverage of the constrained images additionally. Applications of the 
prestack inverse rays to the error analysis and to imaging a sedimentary basin suggest that the 
method of ray geometry is, in general, superior to the method of elliptic envelope, except when 
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the travel-time hyperbola possesses limited arrivals. Therefore, the best way to apply prestack 
inverse rays is to determine the layer velocity from ray geometry and to image the interface by 
considering both methods. 

Results from this study can be used to rapidly and accurately process multi-channel seis­
mic data with a low signal-to-noise ratio in the fields of engineering geology (e.g. fracture 
surfaces in the tunnel and land slide), seismology (e.g. normal and thrust fault planes), re­
source exploration (e.g. salt and shale) and plate tectonics (e.g. subduction complex and frac­
ture zone). Therefore, the prestack inverse-ray imaging offers great potential for applications 
in migration velocity analysis and real-time monitoring. 
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APPENDIX A 

A Travel-Time Hyperbola of a Common Shot Gather 

By considering the cosine theorem of the triangle SS'R in Fig. la, I have 

S'R
2 

= 4h2 + x2 + 4hxsina· (Al) 
A travel-time hyperbola of a common shot gather can be derived from dividing (Al) by the 
square of the layer velocity, ( ) 2 x-x 

f2 = f2+ ms 
x m V ' 

where the shortest travel-time and offset pairs of the reflected hyperbola are 

2h 
tm = vcosa and xms = -2hsina, 

respectively. The receiver with the offsetxms is located above the virtual source (S'). 

(A2) 

(A3) 

Since the shortest travel-time (t ) and the associated offset (x ) in general cannot be m ms 
picked from the travel-time hyperbola (A2) in a common shot section, the least travel-time 
error is applied to fit the travel-time hyperbola and to determine V, x and t . Let the square of ms m 
the travel-time error be 

N 

E = L/ ax� + bx; + c -i: )2 , (A4) 
i=l 

where a= v-2, b = -2x /V2, c = (t )2+(x IV)2 and N is the number of the travel-time picks. If the ms m nt5 
derivatives of E with respect to a, band care zero, I derive 

where 
N N 

Sn= I,x;,n = 1,2,3,4 and Bm = 2.,cx;nt;2),m = 0,1,2. 
i=l i=l 

By considering the matrix inversion, (A5) is reduced to 

(A5) 

(A6) 



where 
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(A7) 

(AS) 

C1 = N S2 - S� , C2 = N S4 -Si , C3 = S2S4 - S� , (A9) 

C4=S1S2-NS3, C5=S2S3-S1S4, C6=S1S3-S2• (AlO) 2 

Therefore, the layer velocity, the offset and the shortest travel-time, 

{!1_ D2 4D1D3 -D
2 

v = � DI 
' xms = -

2Dl 
and tm = 4DaD1 2 ' 

(All) 

are obtained, where 

DI = C1B2 + C4B1 + C6BO , 

Dz = C4B2 + C2B1 +Cs Bo , 

D3 = C6B2 + CsB1 + C3Bo · 

(A12) 

(A13) 

(Al4) 

The distance from a source to an interface (h) and the dip of the interface (a) can be readily 
derived from substitution of (A6) and (A8)-(A14) into (A3). 

APPENDIX B 

A Reflected Ellipse 

Since a reflected point A at an ellipse of a constant travel time can be indicated as 

A=(a cos 8, b sin 8), (Bl) 

the tangential vector of the reflected ellipse atA is 

d A= (-a sin e, b cos B) 
de 

· (B2) 

The angle e in the reflected ellipse can be drawn from projecting the reflected point onto two 
circles (dashed lines in Fig. 3) with radii of a and b along the directions of the minor and major 
axes, respectively. On the other hand, by considering b

2 = a2 -c2 
and the reflected ellipse 

(Fig. 3), distances between the reflected point and the foci are 

fr.= �(acos8 + c)
2 

+ b
2 sin2 8 =a+ ccose, (B3) 

(B4) 
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Therefore, directions of an inverse ray emitting from the foci of a reflected ellipse (Fig. 3) can 
be derived from 

cos(LS) = acose + c
' a + ccose 

cos(LR) 
= acos8-c

, a-ccose 

sin(LS) = 
bsin8 

, a+ ccose 

sin(LR) = bsine 
. a- ccose 

(B5) 

(B6) 




